
Learn Data
Analysis with
Python

Lessons in Coding
—
A.J. Henley
Dave Wolf

Learn Data Analysis
with Python

Lessons in Coding

A.J. Henley
Dave Wolf

Learn Data Analysis with Python: Lessons in Coding

ISBN-13 (pbk): 978-1-4842-3485-3		 ISBN-13 (electronic): 978-1-4842-3486-0
https://doi.org/10.1007/978-1-4842-3486-0

Library of Congress Control Number: 2018933537

Copyright © 2018 by A.J. Henley and Dave Wolf

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484234853.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

A.J. Henley
Washington, D.C.,
District of Columbia,
USA

Dave Wolf
Adamstown,
Maryland,
USA

https://doi.org/10.1007/978-1-4842-3486-0

iii

About the Authors��vii

About the Technical Reviewer��ix

Table of Contents

Chapter 1: �How to Use This Book��1

Installing Jupyter Notebook���1

What Is Jupyter Notebook?��2

What Is Anaconda?���2

Getting Started���3

Getting the Datasets for the Workbook’s Exercises��4

Chapter 2: �Getting Data Into and Out of Python�������������������������������������5

Loading Data from CSV Files��5

Your Turn���7

Saving Data to CSV��7

Your Turn���8

Loading Data from Excel Files���8

Your Turn���9

Saving Data to Excel Files��10

Your Turn���11

Combining Data from Multiple Excel Files���11

Your Turn���13

Loading Data from SQL��13

Your Turn���14

iv

Saving Data to SQL��15

Your Turn���16

Random Numbers and Creating Random Data��16

Your Turn���18

Chapter 3: �Preparing Data Is Half the Battle���������������������������������������19

Cleaning Data���19

Calculating and Removing Outliers��20

Missing Data in Pandas Dataframes���22

Filtering Inappropriate Values���24

Finding Duplicate Rows��26

Removing Punctuation from Column Contents���27

Removing Whitespace from Column Contents���28

Standardizing Dates���29

Standardizing Text like SSNs, Phone Numbers, and Zip Codes����������������������31

Creating New Variables��32

Binning Data���33

Applying Functions to Groups, Bins, and Columns���35

Ranking Rows of Data��37

Create a Column Based on a Conditional���38

Making New Columns Using Functions��39

Converting String Categories to Numeric Variables���������������������������������������40

Organizing the Data���42

Removing and Adding Columns��42

Selecting Columns��44

Change Column Name��45

Setting Column Names to Lower Case���47

Finding Matching Rows��48

Filter Rows Based on Conditions��50

Table of ContentsTable of Contents

v

Selecting Rows Based on Conditions���51

Random Sampling Dataframe��52

Chapter 4: �Finding the Meaning��55

Computing Aggregate Statistics���55

Your Turn���57

Computing Aggregate Statistics on Matching Rows��58

Your Turn���59

Sorting Data���59

Your Turn���60

Correlation���60

Your Turn���62

Regression���62

Your Turn���63

Regression without Intercept���64

Your Turn���64

Basic Pivot Table��65

Your Turn���68

Chapter 5: �Visualizing Data���69

Data Quality Report��69

Your Turn���71

Graph a Dataset: Line Plot��71

Your Turn���74

Graph a Dataset: Bar Plot���74

Your Turn���76

Graph a Dataset: Box Plot��76

Your Turn���79

Table of ContentsTable of Contents

vi

Graph a Dataset: Histogram���79

Your Turn���82

Graph a Dataset: Pie Chart���82

Your Turn���86

Graph a Dataset: Scatter Plot���86

Your Turn���87

Chapter 6: �Practice Problems��89

Analysis Exercise 1��89

Analysis Exercise 2��90

Analysis Exercise 3��90

Analysis Exercise 4��91

Analysis Project��91

Required Deliverables��93

�Index��95

Table of ContentsTable of Contents

vii

About the Authors

A.J. Henley is a technology educator with over

20 years’ experience as a developer, designer,

and systems engineer. He is an instructor at

both Howard University and Montgomery

College.  

Dave Wolf is a certified Project Management

Professional (PMP) with over 20 years’

experience as a software developer, analyst,

and trainer. His latest projects include

collaboratively developing training materials

and programming bootcamps for Java and

Python. 

ix

About the Technical Reviewer

Michael Thomas has worked in software

development for more than 20 years as an

individual contributor, team lead, program

manager, and vice president of engineering.

Michael has more than ten years of experience

working with mobile devices. His current focus

is in the medical sector, using mobile devices

to accelerate information transfer between

patients and health-care providers.  

1© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_1

CHAPTER 1

How to Use This Book
If you are already using Python for data analysis, just browse this book’s

table of contents. You will probably find a bunch of things that you wish

you knew how to do in Python. If so, feel free to turn directly to that chapter

and get to work. Each lesson is, as much as possible, self-contained.

Be warned! This book is more a workbook than a textbook.

If you aren’t using Python for data analysis, begin at the beginning. If

you work your way through the whole workbook, you should have a better

of idea of how to use Python for data analysis when you are done.

If you know nothing at all about data analysis, this workbook might not

be the place to start. However, give it a try and see how it works for you.

�Installing Jupyter Notebook
The fastest way to install and use Python is to do what you already know

how to do, and you know how to use your browser. Why not use Jupyter

Notebook?

2

�What Is Jupyter Notebook?
Jupyter Notebook is an interactive Python shell that runs in your browser.

When installed through Anaconda, it is easy to quickly set up a Python

development environment. Since it’s easy to set up and easy to run, it will

be easy to learn Python.

Jupyter Notebook turns your browser into a Python development

environment. The only thing you have to install is Anaconda. In

essence, it allows you to enter a few lines of Python code, press

CTRL+Enter, and execute the code. You enter the code in cells and

then run the currently selected cell. There are also options to run all

the cells in your notebook. This is useful if you are developing a larger

program.

�What Is Anaconda?
Anaconda is the easiest way to ensure that you don’t spend all day

installing Jupyter. Simply download the Anaconda package and run the

installer. The Anaconda software package contains everything you need

to create a Python development environment. Anaconda comes in two

versions—one for Python 2.7 and one for Python 3.x. For the purposes of

this guide, install the one for Python 2.7.

Anaconda is an open source data-science platform. It contains over

100 packages for use with Python, R, and Scala. You can download and

install Anaconda quickly with minimal effort. Once installed, you can

update the packages or Python version or create environments for different

projects.

Chapter 1 How to Use This Book

3

�Getting Started

	 1.	 Download and install Anaconda at https://www.

anaconda.com/download.

	 2.	 Once you’ve installed Anaconda, you’re ready to

create your first notebook. Run the Jupyter Notebook

application that was installed as part of Anaconda.

	 3.	 Your browser will open to the following address:

http://localhost:8888. If you’re running

Internet Explorer, close it. Use Firefox or Chrome

for best results. From there, browse to http://

localhost:8888.

	 4.	 Start a new notebook. On the right-hand side of the

browser, click the drop-down button that says "New"

and select Python or Python 2.

	 5.	 This will open a new iPython notebook in another

browser tab. You can have many notebooks open in

many tabs.

	 6.	 Jupyter Notebook contains cells. You can type Python

code in each cell. To get started (for Python 2.7),

type print "Hello, World!" in the first cell and

hit CTRL+Enter. If you’re using Python 3.5, then the

command is print("Hello, World!").

Chapter 1 How to Use This Book

https://www.anaconda.com/download
https://www.anaconda.com/download

4

�Getting the Datasets for the Workbook’s
Exercises

	 1.	 Download the dataset files from http://www.

ajhenley.com/dwnld.

	 2.	 Upload the file datasets.zip to Anaconda in the

same folder as your notebook.

	 3.	 Run the Python code in Listing 1-1 to unzip the

datasets.

Listing 1-1.  Unzipping dataset.zip

path_to_zip_file = "datasets.zip"

directory_to_extract_to = ""

import zipfile

zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')

zip_ref.extractall(directory_to_extract_to)

zip_ref.close()

Chapter 1 How to Use This Book

http://www.ajhenley.com/dwnld
http://www.ajhenley.com/dwnld

5© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_2

CHAPTER 2

Getting Data Into
and Out of Python
The first stage of data analysis is getting the data. Moving your data from

where you have it stored into your analytical tools and back out again can

be a difficult task if you don't know what you are doing. Python and its

libraries try to make it as easy as possible.

With just a few lines of code, you will be able to import and export data

in the following formats:

•	 CSV

•	 Excel

•	 SQL

�Loading Data from CSV Files
Normally, data will come to us as files or database links. See Listing 2-1 to

learn how to load data from a CSV file.

Listing 2-1.  Loading Data from CSV File

import pandas as pd

Location = "datasets/smallgradesh.csv"

df = pd.read_csv(Location, header=None)

6

Now, let's take a look at what our data looks like (Listing 2-2):

Listing 2-2.  Display First Five Lines of Data

df.head()

As you can see, our dataframe lacks column headers. Or, rather, there

are headers, but they weren't loaded as headers; they were loaded as row

one of your data. To load data that includes headers, you can use the code

shown in Listing 2-3.

Listing 2-3.  Loading Data from CSV File with Headers

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

Then, as before, we take a look at what the data looks like by running

the code shown in Listing 2-4.

Listing 2-4.  Display First Five Lines of Data

df.head()

If you have a dataset that doesn't include headers, you can add them

afterward. To add them, we can use one of the options shown in Listing 2-5.

Listing 2-5.  Loading Data from CSV File and Adding Headers

import pandas as pd

Location = "datasets/smallgrades.csv"

To add headers as we load the data...

df = pd.read_csv(Location, names=['Names','Grades'])

To add headers to a dataframe

df.columns = ['Names','Grades']

Chapter 2 Getting Data Into and Out of Python

7

�Your Turn
Can you make a dataframe from a file you have uploaded and imported

on your own? Let's find out. Go to the following website, which contains

U.S. Census data (http://census.ire.org/data/bulkdata.html), and

download the CSV datafile for a state. Now, try to import that data into

Python.

�Saving Data to CSV
Maybe you want to save your progress when analyzing data. Maybe you are

just using Python to massage some data for later analysis in another tool.

Or maybe you have some other reason to export your dataframe to a CSV

file. The code shown in Listing 2-6 is an example of how to do this.

Listing 2-6.  Exporting a Dataset to CSV

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList, columns=['Names','Grades'])

df.to_csv('studentgrades.csv',index=False,header=False)

Lines 1 to 6 are the lines that create the dataframe. Line 7 is the code to

export the dataframe df to a CSV file called studentgrades.csv.

The only parameters we use are index and header. Setting these

parameters to false will prevent the index and header names from

being exported. Change the values of these parameters to get a better

understanding of their use.

Chapter 2 Getting Data Into and Out of Python

http://census.ire.org/data/bulkdata.html

8

If you want in-depth information about the to_csv method, you can, of

course, use the code shown in Listing 2-7.

Listing 2-7.  Getting Help on to_csv

df.to_csv?

�Your Turn
Can you export the dataframe created by the code in Listing 2-8 to CSV?

Listing 2-8.  Creating a Dataset for the Exercise

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

Degrees = zip(names,grades,bsdegrees,msdegrees,phddegrees)

columns = ['Names','Grades','BS','MS','PhD']

df = pd.DataFrame(data = Degrees, columns=column)

df

�Loading Data from Excel Files
Normally, data will come to us as files or database links. Let's see how to

load data from an Excel file (Listing 2-9).

Chapter 2 Getting Data Into and Out of Python

9

Listing 2-9.  Loading Data from Excel File

import pandas as pd

Location = "datasets/gradedata.xlsx"

df = pd.read_excel(Location)

Now, let's take a look at what our data looks like (Listing 2-10).

Listing 2-10.  Display First Five Lines of Data

df.head()

If you wish to change or simplify your column names, you can run the

code shown in Listing 2-11.

Listing 2-11.  Changing Column Names

df.columns = ['first','last','sex','age','exer','hrs','grd','addr']

df.head()

�Your Turn
Can you make a dataframe from a file you have uploaded and imported

on your own? Let's find out. Go to https://www.census.gov/support/

USACdataDownloads.html and download one of the Excel datafiles at the

bottom of the page. Now, try to import that data into Python.

Chapter 2 Getting Data Into and Out of Python

https://www.census.gov/support/USACdataDownloads.html
https://www.census.gov/support/USACdataDownloads.html

10

�Saving Data to Excel Files
The code shown in Listing 2-12 is an example of how to do this.

Listing 2-12.  Exporting a Dataframe to Excel

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names','Grades'])

writer = pd.ExcelWriter('dataframe.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

writer.save()

If you wish, you can save different dataframes to different sheets, and

with one .save() you will create an Excel file with multiple worksheets

(see Listing 2-13).

Listing 2-13.  Exporting Multiple Dataframes to Excel

writer = pd.ExcelWriter('dataframe.xlsx',engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

df2.to_excel(writer, sheet_name='Sheet2')

writer.save()

Note T his assumes that you have another dataframe already
loaded into the df2 variable.

Chapter 2 Getting Data Into and Out of Python

11

�Your Turn
Can you export the dataframe created by the code shown in Listing 2-14 to

Excel?

Listing 2-14.  Creating a Dataset for the Exercise

import pandas as pd

names = ['Nike','Adidas','New Balance','Puma',’Reebok’]

grades = [176,59,47,38,99]

PriceList = zip(names,prices)

df = pd.DataFrame(data = PriceList, columns=['Names',’Prices’])

�Combining Data from Multiple Excel Files
In earlier lessons, we opened single files and put their data into individual

dataframes. Sometimes we will need to combine the data from several

Excel files into the same dataframe.

We can do this either the long way or the short way. First, let's see the

long way (Listing 2-15).

Listing 2-15.  Long Way

import pandas as pd

import numpy as np

all_data = pd.DataFrame()

df = pd.read_excel("datasets/data1.xlsx")

all_data = all_data.append(df,ignore_index=True)

df = pd.read_excel("datasets/data2.xlsx")

all_data = all_data.append(df,ignore_index=True)

Chapter 2 Getting Data Into and Out of Python

12

df = pd.read_excel("datasets/data3.xlsx")

all_data = all_data.append(df,ignore_index=True)

all_data.describe()

•	 Line 4: First, let's set all_data to an empty dataframe.

•	 Line 6: Load the first Excel file into the dataframe df.

•	 Line 7: Append the contents of df to the dataframe

all_data.

•	 Lines 9 & 10: Basically the same as lines 6 & 7, but for

the next Excel file.

Why do we call this the long way? Because if we were loading a

hundred files instead of three, it would take hundreds of lines of code to do

it this way. In the words of my friends in the startup community, it doesn't

scale well. The short way, however, does scale.

Now, let's see the short way (Listing 2-16).

Listing 2-16.  Short Way

import pandas as pd

import numpy as np

import glob

all_data = pd.DataFrame()

for f in glob.glob("datasets/data*.xlsx"):

 df = pd.read_excel(f)

 all_data = all_data.append(df,ignore_index=True)

all_data.describe()

•	 Line 3: Import the glob library.

•	 Line 5: Let's set all_data to an empty dataframe.

•	 Line 6: This line will loop through all files that match

the pattern.

Chapter 2 Getting Data Into and Out of Python

13

•	 Line 7: Load the Excel file in f into the dataframe df.

•	 Line 8: Append the contents of df to the dataframe

all_data.

Since we only have three datafiles, the difference in code isn't that

noticeable. However, if we were loading a hundred files, the difference in

the amount of code would be huge. This code will load all the Excel files

whose names begin with data that are in the datasets directory no matter

how many there are.

�Your Turn
In the datasets/weekly_call_data folder, there are 104 files of weekly call

data for two years. Your task is to try to load all of that data into one dataframe.

�Loading Data from SQL
Normally, our data will come to us as files or database links. Let's learn

how to load our data from a sqlite database file (Listing 2-17).

Listing 2-17.  Load Data from sqlite

import pandas as pd

from sqlalchemy import create_engine

Connect to sqlite db

db_file = r'datasets/gradedata.db'

engine = create_engine(r"sqlite:///{}"

 .format(db_file))

sql = 'SELECT * from test'

 'where Grades in (76,77,78)'

sales_data_df = pd.read_sql(sql, engine)

sales_data_df

Chapter 2 Getting Data Into and Out of Python

14

This code creates a link to the database file called gradedata.db and

runs a query against it. It then loads the data resulting from that query into

the dataframe called sales_data_df. If you don't know the names of the

tables in a sqlite database, you can find out by changing the SQL statement

to that shown in Listing 2-18.

Listing 2-18.  Finding the Table Names

sql = "select name from sqlite_master"

 "where type = 'table';"

Once you know the name of a table you wish to view (let's say it was

test), if you want to know the names of the fields in that table, you can

change your SQL statement to that shown in Listing 2-19.

Listing 2-19.  A Basic Query

sql = "select * from test;"

Then, once you run sales_data_df.head() on the dataframe, you will

be able to see the fields as headers at the top of each column.

As always, if you need more information about the command, you can

run the code shown in Listing 2-20.

Listing 2-20.  Get Help on read_sql

sales_data_df.read_sql?

�Your Turn
Can you load data from the datasets/salesdata.db database?

Chapter 2 Getting Data Into and Out of Python

15

�Saving Data to SQL
See Listing 2-21 for an example of how to do this.

Listing 2-21.  Create Dataset to Save

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

df

To export it to SQL, we can use the code shown in Listing 2-22.

Listing 2-22.  Export Dataframe to sqlite

import os

import sqlite3 as lite

db_filename = r'mydb.db'

con = lite.connect(db_filename)

df.to_sql('mytable',

 con,

 flavor='sqlite',

 schema=None,

 if_exists='replace',

index=True,

index_label=None,

chunksize=None,

dtype=None)

con.close()

Chapter 2 Getting Data Into and Out of Python

16

•	 Line 14: mydb.db is the path and name of the sqlite

database you wish to use.

•	 Line 18: mytable is the name of the table in the

database.

As always, if you need more information about the command, you can

run the code shown in Listing 2-23.

Listing 2-23.  Get Help on to_sql

df.to_sql?

�Your Turn
This might be a little tricky, but can you create a sqlite table that contains

the data found in datasets/gradedata.csv?

�Random Numbers and Creating
Random Data
Normally, you will use the techniques in this guide with datasets of real

data. However, sometimes you will need to create random values.

Say we wanted to make a random list of baby names. We could get

started as shown in Listing 2-24.

Listing 2-24.  Getting Started

import pandas as pd

from numpy import random

from numpy.random import randint

names = ['Bob','Jessica','Mary','John','Mel']

Chapter 2 Getting Data Into and Out of Python

17

First, we import our libraries as usual. In the last line, we create a list of

the names we will randomly select from.

Next, we add the code shown in Listing 2-25.

Listing 2-25.  Seeding Random Generator

random.seed(500)

This seeds the random number generator. If you use the same seed,

you will get the same "random” numbers.

What we will try to do is this:

	 1.	 randint(low=0,high=len(names))

Generates a random integer between zero and the

length of the list names.

	 2.	 names[n]

Selects the name where its index is equal to n.

	 3.	 for i in range(n)

Loops until i is equal to n, i.e., 1,2,3,….n.

	 4.	 random_names =

Selects a random name from the name list and does

this n times.

We will do all of this in the code shown in Listing 2-26.

Listing 2-26.  Selecting 1000 Random Names

randnames = []

for i in range(1000):

 name = names[randint(low=0,high=len(names))]

 randnames.append(name)

Chapter 2 Getting Data Into and Out of Python

18

Now we have a list of 1000 random names saved in our random_names

variable. Let's create a list of 1000 random numbers from 0 to 1000

(Listing 2-27).

Listing 2-27.  Selecting 1000 Random Numbers

births = []

for i in range(1000):

 births.append(randint(low=0, high=1000))

And, finally, zip the two lists together and create the dataframe

(Listing 2-28).

Listing 2-28.  Creating Dataset from the Lists of Random Names and

Numbers

BabyDataSet2 = list(zip(randnames,births))

df = pd.DataFrame(data = BabyDataSet2,

 columns=['Names', 'Births'])

df

�Your Turn
Create a dataframe called parkingtickets with 250 rows containing a

name and a number between 1 and 25.

Chapter 2 Getting Data Into and Out of Python

19© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_3

CHAPTER 3

Preparing Data Is Half
the Battle
The second step of data analysis is cleaning the data. Getting data ready for

analytical tools can be a difficult task. Python and its libraries try to make it

as easy as possible.

With just a few lines of code, you will be able to get your data ready for

analysis. You will be able to

•	 clean the data;

•	 create new variables; and

•	 organize the data.

�Cleaning Data
To be useful for most analytical tasks, data must be clean. This means it

should be consistent, relevant, and standardized. In this chapter, you will

learn how to

•	 remove outliers;

•	 remove inappropriate values;

•	 remove duplicates;

20

•	 remove punctuation;

•	 remove whitespace;

•	 standardize dates; and

•	 standardize text.

�Calculating and Removing Outliers
Assume you are collecting data on the people you went to high school

with. What if you went to high school with Bill Gates? Now, even though

the person with the second-highest net worth is only worth $1.5 million,

the average of your entire class is pushed up by the billionaire at the top.

Finding the outliers allows you to remove the values that are so high or so

low that they skew the overall view of the data.

We cover two main ways of detecting outliers:

	 1.	 Standard Deviations: If the data is normally

distributed, then 95 percent of the data is within 1.96

standard deviations of the mean. So we can drop the

values either above or below that range.

	 2.	 Interquartile Range (IQR): The IQR is the

difference between the 25 percent quantile and the

75 percent quantile. Any values that are either lower

than Q1 - 1.5 x IQR or greater than Q3 + 1.5 x IQR are

treated as outliers and removed.

Let's see what these look like (Listings 3-1 and 3-2).

Listing 3-1.  Method 1: Standard Deviation

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

meangrade = df['grade'].mean()

Chapter 3 Preparing Data Is Half the Battle

21

stdgrade = df['grade'].std()

toprange = meangrade + stdgrade * 1.96

botrange = meangrade - stdgrade * 1.96

copydf = df

copydf = copydf.drop(copydf[copydf['grade']

 > toprange].index)

copydf = copydf.drop(copydf[copydf['grade']

 < botrange].index)

copydf

•	 Line 6: Here we calculate the upper range equal to 1.96

times the standard deviation plus the mean.

•	 Line 7: Here we calculate the lower range equal to

1.96 times the standard deviation subtracted from the

mean.

•	 Line 9: Here we drop the rows where the grade is higher

than the toprange.

•	 Line 11: Here we drop the rows where the grade is

lower than the botrange.

Listing 3-2.  Method 2: Interquartile Range

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

q1 = df['grade'].quantile(.25)

q3 = df['grade'].quantile(.75)

iqr = q3-q1

toprange = q3 + iqr * 1.5

botrange = q1 - iqr * 1.5

copydf = df

Chapter 3 Preparing Data Is Half the Battle

22

copydf = copydf.drop(copydf[copydf['grade']

 > toprange].index)

copydf = copydf.drop(copydf[copydf['grade']

 < botrange].index)

copydf

•	 Line 9: Here we calculate the upper boundary = the

third quartile + 1.5 * the IQR.

•	 Line 10: Here we calculate the lower boundary = the

first quartile - 1.5 * the IQR.

•	 Line 13: Here we drop the rows where the grade is

higher than the toprange.

•	 Line 14: Here we drop the rows where the grade is

lower than the botrange.

�Your Turn

Load the dataset datasets/outlierdata.csv. Can you remove the

outliers? Try it with both methods.

�Missing Data in Pandas Dataframes
One of the most annoying things about working with large datasets is

finding the missing datum. It can make it impossible or unpredictable to

compute most aggregate statistics or to generate pivot tables. If you look

for missing data points in a 50-row dataset it is fairly easy. However, if you

try to find a missing data point in a 500,000-row dataset it can be much

tougher.

Python's pandas library has functions to help you find, delete, or

change missing data (Listing 3-3).

Chapter 3 Preparing Data Is Half the Battle

23

Listing 3-3.  Creating Dataframe with Missing Data

import pandas as pd

df = pd.read_csv("datasets/gradedatamissing.csv")

df.head()

The preceding code loads a legitimate dataset that includes rows with

missing data. We can use the resulting dataframe to practice dealing with

missing data.

To drop all the rows with missing (NaN) data, use the code shown in

Listing 3-4.

Listing 3-4.  Drop Rows with Missing Data

df_no_missing = df.dropna()

df_no_missing

To add a column filled with empty values, use the code in Listing 3-5.

Listing 3-5.  Add a Column with Empty Values

import numpy as np

df['newcol'] = np.nan

df.head()

To drop any columns that contain nothing but empty values,

see Listing 3-6.

Listing 3-6.  Drop Completely Empty Columns

df.dropna(axis=1, how='all')

To replace all empty values with zero, see Listing 3-7.

Listing 3-7.  Replace Empty Cells with 0

df.fillna(0)

Chapter 3 Preparing Data Is Half the Battle

24

To fill in missing grades with the mean value of grade, see Listing 3-8.

Listing 3-8.  Replace Empty Cells with Average of Column

df["grade"].fillna(df["grade"].mean(), inplace=True)

Note, inplace=True means that the changes are saved to the dataframe

right away.

To fill in missing grades with each gender's mean value of grade, see

Listing 3-9.

Listing 3-9.  It's Complicated

df["grade"].fillna(df.groupby("gender")

 ["grade"].transform("mean"), inplace=True)

We can also select some rows but ignore the ones with missing data

points. To select the rows of df where age is not NaN and gender is not

NaN, see Listing 3-10.

Listing 3-10.  Selecting Rows with No Missing Age or Gender

df[df['age'].notnull() & df['gender'].notnull()]

�Your Turn

Load the dataset datasets/missinggrade.csv. Your mission, if you

choose to accept it, is to delete rows with missing grades and to replace the

missing values in hours of exercise by the mean value for that gender.

�Filtering Inappropriate Values
Sometimes, if you are working with data you didn't collect yourself, you

need to worry about whether the data is accurate. Heck, sometimes

you need to worry about that even if you did collect it yourself! It can be

Chapter 3 Preparing Data Is Half the Battle

25

difficult to check the veracity of each and every data point, but it is quite

easy to check if the data is appropriate.

Python's pandas library has the ability to filter out the bad values

(see Listing 3-11).

Listing 3-11.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,-2,77,78,101]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

df

To eliminate all the rows where the grades are too high, see Listing 3-12.

Listing 3-12.  Filtering Out Impossible Grades

df.loc[df['Grades'] <= 100]

To change the out-of-bound values to the maximum or minimum

allowed value, we can use the code seen in Listing 3-13.

Listing 3-13.  Changing Impossible Grades

df.loc[(df['Grades'] >= 100,'Grades')] = 100

�Your Turn

Using the dataset from this section, can you replace all the subzero grades

with a grade of zero?

Chapter 3 Preparing Data Is Half the Battle

26

�Finding Duplicate Rows
Another thing you need to worry about if you are using someone else’s

data is whether any data is duplicated. (Did the same data get reported

twice, or recorded twice, or just copied and pasted?) Heck, sometimes

you need to worry about that even if you did collect it yourself! It can be

difficult to check the veracity of each and every data point, but it is quite

easy to check if the data is duplicated.

Python's pandas library has a function for finding not only duplicated

rows, but also the unique rows (Listing 3-14).

Listing 3-14.  Creating Dataset with Duplicates

import pandas as pd

names = ['Jan','John','Bob','Jan','Mary','Jon','Mel','Mel']

grades = [95,78,76,95,77,78,99,100]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

df

To indicate the duplicate rows, we can simply run the code seen in

Listing 3-15.

Listing 3-15.  Displaying Only Duplicates in the Dataframe

df.duplicated()

To show the dataset without duplicates, we can run the code seen in

Listing 3-16.

Listing 3-16.  Displaying Dataset without Duplicates

df.drop_duplicates()

Chapter 3 Preparing Data Is Half the Battle

27

You might be asking, “What if the entire row isn't duplicated, but I

still know it's a duplicate?" This can happen if someone does your survey

or retakes an exam again, so the name is the same, but the observation

is different. In this case, where we know that a duplicate name means a

duplicate entry, we can use the code seen in Listing 3-17.

Listing 3-17.  Drop Rows with Duplicate Names, Keeping the Last

Observation

df.drop_duplicates(['Names'], keep='last')

�Your Turn

Load the dataset datasets/dupedata.csv. We figure people with the same

address are duplicates. Can you drop the duplicated rows while keeping

the first?

�Removing Punctuation from Column Contents
Whether in a phone number or an address, you will often find unwanted

punctuation in your data. Let's load some data to see how to address that

(Listing 3-18).

Listing 3-18.  Loading Dataframe with Data from CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

To add headers as we load the data...

df = pd.read_csv(Location)

df.head()

To remove the unwanted punctuation, we create a function that

returns all characters that aren't punctuation, and them we apply that

function to our dataframe (Listing 3-19).

Chapter 3 Preparing Data Is Half the Battle

28

Listing 3-19.  Stripping Punctuation from the Address Column

import string

exclude = set(string.punctuation)

def remove_punctuation(x):

 try:

 x = ''.join(ch for ch in x if ch not in exclude)

 except:

 pass

 return x

df.address = df.address.apply(remove_punctuation)

df

�Removing Whitespace from Column Contents

Listing 3-20.  Loading Dataframe with Data from CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

To add headers as we load the data...

df = pd.read_csv(Location)

df.head()

To remove the whitespace, we create a function that returns all

characters that aren't punctuation, and them we apply that function to our

dataframe (Listing 3-21).

Listing 3-21.  Stripping Whitespace from the Address Column

def remove_whitespace(x):

 try:

 x = ''.join(x.split())

 except:

Chapter 3 Preparing Data Is Half the Battle

29

 pass

 return x

df.address = df.address.apply(remove_whitespace)

df

�Standardizing Dates
One of the problems with consolidating data from different sources is that

different people and different systems can record dates differently. Maybe

they use 01/03/1980 or they use 01/03/80 or even they use 1980/01/03.

Even though they all refer to January 3, 1980, analysis tools may not

recognize them all as dates if you are switching back and forth between the

different formats in the same column (Listing 3-22).

Listing 3-22.  Creating Dataframe with Different Date Formats

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

bdates = ['1/1/1945','10/21/76','3/3/90',

 '04/30/1901','1963-09-01']

GradeList = zip(names,grades,bsdegrees,msdegrees,

 phddegrees,bdates)

columns=['Names','Grades','BS','MS','PhD',"bdates"]

df = pd.DataFrame(data = GradeList, columns=columns)

df

Listing 3-23 shows a function that standardizes dates to single format.

Chapter 3 Preparing Data Is Half the Battle

30

Listing 3-23.  Function to Standardize Dates

from time import strftime

from datetime import datetime

def standardize_date(thedate):

 formatted_date = ""

 thedate = str(thedate)

 if not thedate or thedate.lower() == "missing"

 or thedate == "nan":

 formatted_date = "MISSING"

 if the_date.lower().find('x') != -1:

 formatted_date = "Incomplete"

 if the_date[0:2] == "00":

 formatted_date = thedate.replace("00", "19")

 try:

 formatted_date = str(datetime.strptime(

 thedate,'%m/%d/%y')

.strftime('%m/%d/%y'))

 except:

 pass

 try:

 formatted_date = str(datetime.strptime(

thedate, '%m/%d/%Y')

.strftime('%m/%d/%y'))

 except:

 pass

 try:

 if int(the_date[0:4]) < 1900:

 formatted_date = "Incomplete"

 else:

 formatted_date = str(datetime.strptime(

 thedate, '%Y-%m-%d')

Chapter 3 Preparing Data Is Half the Battle

31

.strftime('%m/%d/%y'))

 except:

 pass

 return formatted_date

Now that we have this function, we can apply it to the birthdates

column on our dataframe (Listing 3-24).

Listing 3-24.  Applying Date Standardization to Birthdate Column

df.bdates = df.bdates.apply(standardize_date)

df

�Standardizing Text like SSNs, Phone Numbers,
and Zip Codes
One of the problems with consolidating data from different sources is that

different people and different systems can record certain data like Social

Security numbers, phone numbers, and zip codes differently. Maybe they use

hyphens in those numbers, and maybe they don't. This section quickly covers

how to standardize how these types of data are stored (see Listing 3-25).

Listing 3-25.  Creating Dataframe with SSNs

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

ssns = ['867-53-0909','333-22-4444','123-12-1234',

 '777-93-9311','123-12-1423']

Chapter 3 Preparing Data Is Half the Battle

32

GradeList = zip(names,grades,bsdegrees,msdegrees,

 phddegrees,ssns)

columns=['Names','Grades','BS','MS','PhD',"ssn"]

df = pd.DataFrame(data = GradeList, columns=columns)

df

The code in Listing 3-26 creates a function that standardizes the SSNs

and applies it to our ssn column.

Listing 3-26.  Remove Hyphens from SSNs and Add Leading Zeros if

Necessary

def right(s, amount):

 return s[-amount]

def standardize_ssn(ssn):

 try:

 ssn = ssn.replace("-","")

 ssn = "".join(ssn.split())

 if len(ssn)<9 and ssn != 'Missing':

 ssn="000000000" + ssn

 ssn=right(ssn,9)

 except:

 pass

 return ssn

df.ssn = df.ssn.apply(standardize_ssn)

df

�Creating New Variables
Once the data is free of errors, you need to set up the variables that will

directly answer your questions. It's a rare dataset in which every question

you need answered is directly addressed by a variable. So, you may need to

Chapter 3 Preparing Data Is Half the Battle

33

do a lot of recoding and computing of variables to get exactly the dataset

that you need.

Examples include the following:

•	 Creating bins (like converting numeric grades to letter

grades or ranges of dates into Q1, Q2, etc.)

•	 Creating a column that ranks the values in another

column

•	 Creating a column to indicate that another value has

reached a threshold (passing or failing, Dean's list, etc.)

•	 Converting string categories to numbers (for regression

or correlation)

�Binning Data
Sometimes, you will have discrete data that you need to group into bins.

(Think: converting numeric grades to letter grades.) In this lesson, we will

learn about binning (Listing 3-27).

Listing 3-27.  Loading the Dataset from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now that the data is loaded, we need to define the bins and group

names (Listing 3-28).

Chapter 3 Preparing Data Is Half the Battle

34

Listing 3-28.  Define Bins as 0 to 60, 60 to 70, 70 to 80, 80 to 90,

90 to 100

Create the bin dividers

bins = [0, 60, 70, 80, 90, 100]

Create names for the four groups

group_names = ['F', 'D', 'C', 'B', 'A']

Notice that there is one more bin value than there are group_names.

This is because there needs to be a top and bottom limit for each bin.

Listing 3-29.  Cut Grades

df['lettergrade'] = pd.cut(df['grade'], bins,

 labels=group_names)

df

Listing 3-29 categorizes the column grade based on the bins list and

labels the values using the group_names list.

And if we want to count the number of observations for each category,

we can do that too (Listing 3-30).

Listing 3-30.  Count Number of Observations

pd.value_counts(df['lettergrade'])

�Your Turn

Recreate the dataframe from this section and create a column classifying

the row as pass or fail. This is for a master's program that requires a grade

of 80 or above for a student to pass.

Chapter 3 Preparing Data Is Half the Battle

35

�Applying Functions to Groups, Bins,
and Columns
The number one reason I use Python to analyze data is to handle datasets

larger than a million rows. The number two reason is the ease of applying

functions to my data.

To see this, first we need to load up some data (Listing 3-31).

Listing 3-31.  Loading a Dataframe from a CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Then, we use binning to divide the data into letter grades (Listing 3-32).

Listing 3-32.  Using Bins

Create the bin dividers

bins = [0, 60, 70, 80, 90, 100]

Create names for the four groups

group_names = ['F', 'D', 'C', 'B', 'A']

df['letterGrades'] = pd.cut(df['grade'],

 bins, labels=group_names)

df.head()

To find the average hours of study by letter grade, we apply our

functions to the binned column (Listing 3-33).

Listing 3-33.  Applying Function to Newly Created Bin

df.groupby('letterGrades')['hours'].mean()

Chapter 3 Preparing Data Is Half the Battle

36

Applying a function to a column looks like Listing 3-34.

Listing 3-34.  Applying a Function to a Column

Applying the integer function to the grade column

df['grade'] = df['grade'] = df['grade']

.apply(lambda x: int(x))

df.head()

•	 Line 1: Let's get an integer value for each grade in the

dataframe.

Applying a function to a group can be seen in Listing 3-35.

Listing 3-35.  Applying a Function to a Group

gender_preScore = df['grade'].groupby(df['gender'])

gender_preScore.mean()

•	 Line 1: Create a grouping object. In other words, create

an object that represents that particular grouping. In

this case, we group grades by the gender.

•	 Line 2: Display the mean value of each regiment's

pre-test score.

�Your Turn

Import the datasets/gradedata.csv file and create a new binned column

of the 'status' as either passing (> 70) or failing (<=70). Then, compute

the mean hours of exercise of the female students with a 'status' of

passing.

Chapter 3 Preparing Data Is Half the Battle

37

�Ranking Rows of Data
It is relatively easy to find the row with the maximum value or the

minimum value, but sometimes you want to find the rows with the 50

highest or the 100 lowest values for a particular column. This is when you

need ranking (Listing 3-36).

Listing 3-36.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

If we want to find the rows with the lowest grades, we will need to rank

all rows in ascending order by grade. Listing 3-37 shows the code to create

a new column that is the rank of the value of grade in ascending order.

Listing 3-37.  Create Column with Ranking by Grade

df['graderanked'] = df['grade'].rank(ascending=1)

df.tail()

So, if we just wanted to see the students with the 20 lowest grades, we

would use the code in Listing 3-38.

Listing 3-38.  Bottom 20 Students

df[df['graderanked'] < 21]

And, to see them in order, we need to use the code in Listing 3-39.

Listing 3-39.  Bottom 6 Students in Order

df[df['graderanked'] < 6].sort_values('graderanked')

Chapter 3 Preparing Data Is Half the Battle

38

�Your Turn

Can you find the 50 students with the most hours of study per week?

�Create a Column Based on a Conditional
Sometimes, you need to classify a row of data by the values in one or more

columns, such as identifying those students who are passing or failing by

whether their grade is above or below 70. In this section, we will learn how

to do this (Listing 3-40).

Listing 3-40.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now, let us say we want a column indicating whether students are

failing or not (Listing 3-41).

Listing 3-41.  Create Yes/No isFailing Column

import numpy as np

df['isFailing'] = np.where(df['grade']<70,

'yes', 'no')

df.tail(10)

Line 1: We import the numpy library

Line 2: Create a new column called df.failing

where the value is yes if df.grade is less than 70 and

no if not.

Chapter 3 Preparing Data Is Half the Battle

39

If instead we needed a column indicating who the male students were

with failing scores, we could use the code in Listing 3-42.

Listing 3-42.  Create Yes/No isFailingMale Column

df['isFailingMale'] = np.where((df['grade']<70)

 & (df['gender'] == 'male'),'yes', 'no')

df.tail(10)

�Your Turn

Can you create a column for timemgmt that shows busy if a student

exercises more than three hours per week AND studies more than

seventeen hours per week?

�Making New Columns Using Functions
Much of what I used to use Excel to do (and what I now use Python for) is

to create new columns based on an existing one. So, using the following

data (Listing 3-43), let's see how we would do this.

Listing 3-43.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

To create a single column to contain the full name of each student,

we first create a function to create a single string from two strings

(Listing 3-44).

Chapter 3 Preparing Data Is Half the Battle

40

Listing 3-44.  Create Function to Generate Full Name

def singlename(fn, ln):

 return fn + " " + ln

Now, if you test that function, you will see that it works perfectly well

concatenating Adam and Smith into Adam Smith. However, we can also

use it with column selectors to create a new column using our fname and

lname columns (Listing 3-45).

Listing 3-45.  Create Column to Hold the Full Name

df['fullname'] = singlename(df['fname'],df['lname'])

This code creates a column called fullname that concatenates the first

and last name.

�Your Turn

Can you create a column called total time that adds together the hours of

study per week and the hours of exercise per week?

�Converting String Categories to Numeric
Variables
Why do I need to convert string categories to numeric variables? Many

analytical tools won't work on text, but if you convert those values to

numbers it makes things much simpler (Listing 3-46).

Listing 3-46.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Chapter 3 Preparing Data Is Half the Battle

41

Method 1: Convert single column to hold numeric variables

(Listing 3-47).

Listing 3-47.  Function to Convert Gender to Number

def score_to_numeric(x):

 if x=='female':

 return 1

 if x=='male':

 return 0

Now, run that method on your column (Listing 3-48).

Listing 3-48.  Apply score_to_numeric Function to Gender

df['gender_val'] = df['gender'].apply(score_to_numeric)

df.tail()

Method 2: Create individual Boolean columns (Listing 3-49).

Listing 3-49.  Create Boolean Columns Based on Gender Column

df_gender = pd.get_dummies(df['gender'])

df_gender.tail()

Join columns to original dataset (Listing 3-50).

Listing 3-50.  Add New Columns to Original Dataframe

Join the dummy variables to the main dataframe

df_new = pd.concat([df, df_gender], axis=1)

df_new.tail()

or

Alterative for joining the new columns

df_new = df.join(df_gender)

df_new.tail()

Chapter 3 Preparing Data Is Half the Battle

42

�Your Turn

Using datasets/gradesdatawithyear.csv, can you create a numeric

column to replace statuses of freshman through senior with the numerals 1

through 4?

�Organizing the Data
Both original and newly created variables need to be formatted correctly

for two reasons.

First, so our analysis tools work with them correctly. Failing to format

a missing value code or a dummy variable correctly will have major

consequences for your data analysis.

Second, it's much faster to run the analysis and interpret results if you

don't have to keep looking up which variable Q156 is.

Examples include the following:

•	 Removing columns that aren't needed

•	 Changing column names

•	 Changing column names to lower case

•	 Formatting date variables as dates, and so forth.

�Removing and Adding Columns
Sometimes we need to adjust the data. Either something is left out that

should have been included or something was left in that should have been

removed. So, let's start with the dataset in Listing 3-51.

Listing 3-51.  Creating Starting Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

Chapter 3 Preparing Data Is Half the Battle

43

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

GradeList = zip(names,grades,bsdegrees,msdegrees,

 phddegrees)

columns=['Names','Grades','BS','MS','PhD']

df = pd.DataFrame(data = GradeList, columns=columns)

df

We can drop a column by simply adding the code in Listing 3-52.

Listing 3-52.  Dropping a Column

df.drop('PhD', axis=1)

With axis=1 telling drop that we want to drop a column (1) and not a

row (0).

We can add a column filled with zeros by setting the new column name

to be equal to a 0 (Listing 3-53).

Listing 3-53.  Creating a New Column Filled with Zeros

df['HighSchool']=0

If, however, you want to set the new columns to equal null values, you

can do that too (Listing 3-54).

Listing 3-54.  Creating a New Column Filled with Null Values

df['PreSchool'] = np.nan

Now, adding a column with values is not that hard. We create a series

and set the column equal to the series (Listing 3-55).

Chapter 3 Preparing Data Is Half the Battle

44

Listing 3-55.  Creating a New Column Filled with Values

d = ([0,1,0,1,0])

s = pd.Series(d, index= df.index)

df['DriversLicense'] = s

df

�Your Turn

Can you remove the bs, ms, and phd degree columns?

Can you add a Hogwarts Magic Degree column? Everyone but Jessica

has one; does that make it harder? No? Then I have to be sure to stump you

next time.

�Selecting Columns
You will need to make subselections of your data occasionally, especially if

your dataset has tons of columns. Here, we learn how to create a dataframe

that includes only some of our columns (Listing 3-56).

Listing 3-56.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now, to select a column of data, we specify the column name

(Listing 3-57).

Listing 3-57.  Selecting a Column into a List

df['fname']

Chapter 3 Preparing Data Is Half the Battle

45

But if you run that code you only get the data in the column (notice

the header is missing). That is because this doesn't return a dataframe; it

returns a list. To return a dataframe when selecting a column, we need to

specify it (Listing 3-58).

Listing 3-58.  Selecting a Column into a Dataframe

df[['fname']]

To return multiple columns, we use code like that in Listing 3-59.

Listing 3-59.  Selecting Multiple Columns into a Dataframe

df[['fname','age','grade']]

And, of course, if we want to create a dataframe with that subset of

columns, we can copy it to another variable (Listing 3-60).

Listing 3-60.  Creating New Dataframe from Your Selection

df2 = df[['fname','age','grade']]

df2.head()

�Your Turn

We need to create a mailing list. Can you create a new dataframe by

selecting the first name, last name, and address fields?

�Change Column Name
Sometimes you need change the names of your columns. With pandas, it's

easy to do. First, you load your data (Listing 3-61).

Chapter 3 Preparing Data Is Half the Battle

46

Listing 3-61.  Load Dataset from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

But, when we look at the header, we aren't crazy about the column

names—or it doesn't have any.

It is simple to change the column headers (Listing 3-62).

Listing 3-62.  Change All Headers

df.columns = ['FirstName', 'LastName', 'Gender',

 'Age', 'HoursExercisePerWeek',

 'HoursStudyPerWeek', 'LetterGrade',

 'StreetAddress']

df.head()

Or, if you just wanted to change one or two values, you can load the list

of headers (Listing 3-63).

Listing 3-63.  Load List of Headers into a Temp Variable

headers = list(df.columns.values)

Once the headers are loaded, you can change a few (Listing 3-64).

Listing 3-64.  Changing Headers

headers[0] = 'FName'

headers[1] = 'LName'

df.columns = headers

df.head()

Chapter 3 Preparing Data Is Half the Battle

47

�Your Turn

Can you change the age column name to years?

�Setting Column Names to Lower Case
It may not be the biggest problem in the world, but sometimes I need to

convert all the column names to lowercase (or uppercase, for that matter).

This lesson will cover how to do that (Listing 3-65).

Listing 3-65.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Once you have the data, there are two quick ways to cast all the column

headers to lowercase (Listing 3-66).

Listing 3-66.  Casting All Headers to Lowercase

method 1

df.columns = map(str.lower, df.columns)

method 2

df.columns = [x.lower() for x in df.columns]

�Your Turn

Can you figure out how to make all the column headers all uppercase?

Chapter 3 Preparing Data Is Half the Battle

48

�Finding Matching Rows
Of course, you don't always want to compute using the entire dataset.

Sometimes you want to work with just a subset of your data. In this lesson,

we find out how to do that (Listing 3-67).

Listing 3-67.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

df

To find all the rows that contain the word Mel, use the code shown in

Listing 3-68 in a new cell.

Listing 3-68.  Filtering Rows

df['Names'].str.contains('Mel')

After executing that line of Python, you will see a list of Boolean

values—True for the lines that match our query and False for that ones that

don't.

We can make our answer shorter by adding .any. This will just display a

single True if any line matches and False if none of them do (Listing 3-69).

Listing 3-69.  Check if Any Rows Match

check if any row matches

df['Names'].str.contains('Mel').any()

Chapter 3 Preparing Data Is Half the Battle

49

Alternatively, you can add .all. This will just display a single True if all

of the lines match and False if at least one of them does not (Listing 3-70).

Listing 3-70.  Check if All Rows Match

check if all rows match

df['Names'].str.contains('Mel').all()

We can also use this along with the .loc (locate) function to show just

the rows that match certain criteria (Listing 3-71).

Listing 3-71.  Show the Rows that Match

Find the rows that match a criteria like this

df.loc[df['Names'].str.contains('Mel')==True]

or even like this...

df.loc[df['Grades']==0]

�Your Turn

Can you find all the people who have at least one MS degree in the

following data (Listing 3-72)?

Listing 3-72.  Starting Dataset

import pandas as pd

names = ['Bob','Jessi','Mary','John','Mel','Sam',

 'Cathy','Hank','Lloyd']

grades = [76,95,77,78,99,84,79,100,73]

bsdegrees = [1,1,0,0,1,1,1,0,1]

msdegrees = [2,1,0,0,0,1,1,0,0]

phddegrees = [0,1,0,0,0,2,1,0,0]

GradeList = zip(names,grades,bsdegrees,msdegrees,

 phddegrees)

Chapter 3 Preparing Data Is Half the Battle

50

df = pd.DataFrame(data = GradeList, columns=['Name','Grade','BS',

'MS','PhD'])

df

�Filter Rows Based on Conditions

Listing 3-73.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

We can show one column of data (Listing 3-74).

Listing 3-74.  One Column

df['grade'].head()

Or we can show two columns of data (Listing 3-75).

Listing 3-75.  Two Columns

df[['age','grade']].head()

Or we can show the first two rows of data (Listing 3-76).

Listing 3-76.  First Two Rows

df[:2]

To show all the rows where the grade is greater than 80, use the code in

Listing 3-77.

Listing 3-77.  All Rows with Grade > 80

df[df['grade'] > 80]

Chapter 3 Preparing Data Is Half the Battle

51

Using multiple conditions is a little trickier. So, if we wanted to get a list

of all the students who scored higher than 99.9 and were male, we would

need to use the code shown in Listing 3-78.

Listing 3-78.  All Rows Where Men Scored > 99.9

df.ix[(df['grade'] > 99.9) &

 (df['gender'] == 'male')]

If instead we wanted all the students who scored higher than 99 OR

were female, we would need to use the code in Listing 3-79.

Listing 3-79.  All Rows Where Women or Scored > 99

df.ix[(df['grade'] > 99) | (df['gender'] == 'female')]

�Your Turn

Can you show all the rows where the student was male, exercised less than

two hours per week, and studied more than fifteen hours per week?

�Selecting Rows Based on Conditions

Listing 3-80.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Listing 3-81.  Method 1: Using Variables to Hold Attributes

female = df['gender'] == "female"

a_student = df['grade'] >= 90

df[female & a_student].head()

Chapter 3 Preparing Data Is Half the Battle

52

Line 1: We create a variable with TRUE if gender is

female.

Line 2: We create a variable with TRUE if grade is

greater than or equal to 90.

Line 3: This is where we select all cases where both

gender is female and grade is greater than or equal

to 90.

Listing 3-82.  Method 2: Using Variable Attributes Directly

df[df['fname'].notnull() & (df['gender'] == "male")]

In Listing 3-82, we select all cases where the first name is not missing

and gender is male.

�Your Turn

Can you find all the rows where the student had four or more hours of

exercise per week, seventeen or more hours of study, and still had a grade

that was lower than 80?

�Random Sampling Dataframe
This one is simple. Obviously, sometimes we have datasets that are too

large and we need to take a subset, so let's start with some loaded data

(Listing 3-83).

Listing 3-83.  Load Dataset from CSV

import pandas as pd

import numpy as np

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.tail()

Chapter 3 Preparing Data Is Half the Battle

53

To select just 100 rows randomly from that dataset, we can simply run

the code shown in Listing 3-84.

Listing 3-84.  Random Sample of 100 Rows from Dataframe

df.take(np.random.permutation(len(df))[:100])

�Your Turn

Can you create a random sample of 500 rows from that dataset?

Chapter 3 Preparing Data Is Half the Battle

55© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_4

CHAPTER 4

Finding the Meaning
The third stage of data analysis is actually analyzing the data. Finding

meaning within your data can be difficult without the right tools. In this

section, we look at some of the tools available to the Python user.

With just a few lines of code, you will be able to do the following

analysis:

•	 Compute descriptive statistics

•	 Correlation

•	 Linear regression

•	 Pivot tables

�Computing Aggregate Statistics
As you may have seen in the last chapter, it is easy to get some summary

statistics by using describe. Let’s take a look at how we can find those

values directly.

First, let’s create some data (Listing 4-1).

Listing 4-1.  Creating Dataset for Statistics

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

56

GradeList = zip(names,grades)

df = pd.DataFrame(data=GradeList,

 columns=['Names','Grades'])

df

Once that is set up, we can take a look at some statistics (Listing 4-2).

Listing 4-2.  Computing Aggregate Statistics

df['Grades'].count() # number of values

df['Grades'].mean() # arithmetic average

df['Grades'].std() # standard deviation

df['Grades'].min() # minimum

df['Grades'].max() # maximum

df['Grades'].quantile(.25) # first quartile

df['Grades'].quantile(.5) # second quartile

df['Grades'].quantile(.75) # third quartile

Note  If you tried to execute the previous code in one cell all at
the same time, the only thing you would see is the output of the
.quantile() function. You have to try them one by one. I simply
grouped them all together for reference purposes. OK?

It is important to note that the mean is not the only measure of central

tendency. See Listing 4-3 for other measures.

Listing 4-3.  Other Measures of Central Tendency

computes the arithmetic average of a column

mean = dividing the sum by the number of values

df['Grades'].mean()

finds the median of the values in a column

Chapter 4 Finding the Meaning

57

median = the middle value if they are sorted in order

df['Grades'].median()

finds the mode of the values in a column

mode = the most common single value

df['Grades'].mode()

And if you need to compute standard deviation, you might also need

variance (Listing 4-4).

Listing 4-4.  Computing Variance

computes the variance of the values in a column

df['Grades'].var()

Finally, you don’t have to specify the column to compute the statistics.

If you just run it against the whole dataframe, you will get the function to

run on all applicable columns (Listing 4-5).

Listing 4-5.  Computing Variance on All Numeric Columns

df.var()

�Your Turn
Of course, in our dataset we only have one column. Try creating a

dataframe and computing summary statistics using the dataset in

Listing 4-6.

Listing 4-6.  Starting Dataset

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

Chapter 4 Finding the Meaning

58

�Computing Aggregate Statistics
on Matching Rows
It is possible to compute descriptive statistics on just the rows that match

certain criteria. First, let’s create some data (Listing 4-7).

Listing 4-7.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bs = [1,1,0,0,1]

ms = [2,1,0,0,0]

phd = [0,1,0,0,0]

GradeList = zip(names,grades,bs,ms,phd)

df = pd.DataFrame(data=GradeList,

 columns=['Name','Grade','BS','MS','PhD'])

df

Ok, we have covered how to find the rows that match a set of criteria.

We have also covered how to compute descriptive statistics, both all at

once and one by one. If you put those two together, you will be able to find

the statistics of the data that matches certain criteria.

So, to count the rows of the people without a PhD, use the code shown

in Listing 4-8.

Listing 4-8.  Code for Computing Aggregate Statistics

df.loc[df['PhD']==0].count()

You can use any of the aggregate statistics functions on individual

columns in the same way. So, to find the average grade of those people

without a PhD, use the code in Listing 4-9.

Chapter 4 Finding the Meaning

59

Listing 4-9.  Computing Aggregate Statistics on a Particular Column

df.loc[df['PhD']==0]['Grade'].mean()

�Your Turn
Using the data from Listing 4-10, what is the average grade for people with

master’s degrees?

Listing 4-10.  Dataset for Exercise

import pandas as pd

names = ['Bob','Jessica','Mary','John',

 'Mel','Sam','Cathy','Henry','Lloyd']

grades = [76,95,77,78,99,84,79,100,73]

bs = [1,1,0,0,1,1,1,0,1]

ms = [2,1,0,0,0,1,1,0,0]

phd = [0,1,0,0,0,2,1,0,0]

GradeList = zip(names,grades,bs,ms,phd)

df = pd.DataFrame(data=GradeList,

 columns=['Names','Grades','BS','MS','PhD'])

df

�Sorting Data
Generally, we get data in a random order, but need to use it in a completely

different order. We can use the sort_values function to rearrange our data

to our needs (Listing 4-11).

Chapter 4 Finding the Meaning

60

Listing 4-11.  Loading Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Sort the dataframe’s rows by age, in descending order (Listing 4-12).

Listing 4-12.  Sorting by Age, Descending

df = df.sort_values(by='age', ascending=0)

df.head()

Sort the dataframe’s rows by hours of study and then by exercise, in

ascending order (Listing 4-13).

Listing 4-13.  Sorting by Hours of Study and Exercise, Ascending

df = df.sort_values(by=['grade', 'age'],

 ascending=[True, True])

df.head()

�Your Turn
Can you sort the dataframe to order it by name, age, and then grade?

�Correlation
Correlation is any of a broad class of statistical relationships involving

dependence, though in common usage it most often refers to the extent

to which two variables have a linear relationship with each other. Familiar

examples of dependent phenomena include the correlation between

the physical statures of parents and their offspring, and the correlation

between the demand for a product and its price.

Chapter 4 Finding the Meaning

61

Basically, correlation measures how closely two variables move in the

same direction. Tall parents have tall kids? Highly correlated. Wear lucky

hat, but rarely win at cards? Very slightly correlated. As your standard of

living goes up, your level of savings plummet? Highly negatively correlated.

Simple, right?

Well, computing correlation can be a little difficult by hand, but is

totally simple in Python (Listing 4-14).

Listing 4-14.  Running a Correlation

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

df.corr()

Age Exercise Hours Grade

Age 1.000000 -0.003643 -0.017467 -0.007580

Exercise -0.003643 1.000000 0.021105 0.161286

Hours -0.017467 0.021105 1.000000 0.801955

Grade -0.007580 0.161286 0.801955 1.000000

The intersections with the highest absolute values are the columns that

are the most correlated. Positive values are positively correlated, which

means they go up together. Negative values are negatively correlated (as

one goes up the other goes down). And, of course, each column is perfectly

correlated with itself. As you can see, hours of study and grade are highly

correlated.

Chapter 4 Finding the Meaning

62

�Your Turn
Load the data from the code in Listing 4-15 and find the correlations.

Listing 4-15.  Load Data from CSV

import pandas as pd

Location = "datasets/tamiami.csv"

�Regression
In statistical modeling, regression analysis is a statistical process for

estimating the relationships among variables. This is a fancy way of saying

that we use regression to create an equation that explains the value of a

dependent variable based on one or several independent variables. Let’s

get our data (Listing 4-16),

Listing 4-16.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Once we have that, we need to decide what columns we want to perform

the regression on and which is the dependent variable. I want to try to predict

the grade based on the age, hours of exercise, and hours of study (Listing 4-17).

Listing 4-17.  First Regression

import statsmodels.formula.api as sm

result = sm.ols(

 formula='grade ~ age + exercise + hours',

 data=df).fit()

result.summary()

Chapter 4 Finding the Meaning

63

The formula format in line two is one that you need to learn and get

comfortable editing. It shows the dependent variable on the left of the tilde

(~) and the independent variables we want considered on the right.

If you look at the results you get from the summary, the R-squared

represents the percentage of the variation in the data that can be

accounted for by the regression. .664, or 66.4 percent, is good, but not

great. The p-value (represented here by the value of P>|t|) represents the

probability that the independent variable has no effect on the dependent

variable. I like to keep my p-values less than 5 percent, so the only variable

that stands out is the age with 59.5 percent. Let’s rerun the regression, but

leaving out the age (Listing 4-18).

Listing 4-18.  Second Regression

import statsmodels.formula.api as sm

result = sm.ols(

 formula='grade ~ exercise + hours',

 data=df).fit()

result.summary()

Looking at our new results, we haven’t changed our R-squared, but

we have eliminated all our high p-values. So, we can now look at our

coefficients, and we will end up with an equation that looks something

like grade = 1.916 * hours of study +.989 * hours of exercise +

58.5316.

�Your Turn
Create a new column where you convert gender to numeric values, like

1 for female and 0 for male. Can you now add gender to your regression?

Does this improve your R-squared?

Chapter 4 Finding the Meaning

64

�Regression without Intercept
Sometimes, your equation works better without an intercept. This can

happen even though your p-values indicate otherwise. I always try it both

ways, just as a matter of course, to see what the R-Squared is. To run your

regression without an intercept, simply follow Listing 4-19.

Listing 4-19.  Run Regression without Intercept

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

result = sm.ols(

 formula='grade ~ age + exercise + hours - 1', data=df).

fit()

result.summary()

Note that it is the - 1 at the end of the formula that tells Python that

you wish to eliminate the intercept. If you look at the results, you can see

we now have a much higher R-squared than we had in the last lesson, and

we also have no p-values that cause us concern.

�Your Turn
Try running these simple regressions with no intercept: 1. Tests for the

relationship between just grade and age; 2. Tests for the relationship

between just grade and exercise; and 3. Tests for the relationship between

just grade and study.

If you had to pick just one, which one do you like best?

Chapter 4 Finding the Meaning

65

�Basic Pivot Table
Pivot tables (or crosstabs) have revolutionized how Excel is used to do

analysis. However, I like pivot tables in Python better than I do in Excel.

Let’s get some data (Listing 4-20).

Listing 4-20.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

At its simplest, to get a pivot table we need a dataframe and an index

(Listing 4-21).

Listing 4-21.  Get Averages of All Numeric Columns Categorized by

Gender

pd.pivot_table(df, index=['gender'])

As you can see, pivot_table is smart enough to assume that we want

the averages of all the numeric columns. If we wanted to specify just one

value, we could do that (Listing 4-22).

Listing 4-22.  Average Grade by Gender

pd.pivot_table(df,

 values=['grade'],

 index=['gender'])

Gender Grade

Female 82.7173

Male 82.3948

Chapter 4 Finding the Meaning

66

Now we see just the average grades, categorized by gender. If we wanted

to, however, we could look at minimum hours of study (Listing 4-23).

Listing 4-23.  Minimum Grade by Gender

pd.pivot_table(df,

 values=['grade'],

 index=['gender'],

 aggfunc='min')

Gender Grade

Female 2

Male 0

We can also add other columns to the index. So, to view the maximum

grade categorized by gender and age, we simply run the code in Listing 4-24.

Listing 4-24.  Max Grade by Gender and Age

pd.pivot_table(df,

 index=['gender','age'],

 aggfunc='max',

 values=['hours'])

Gender Age Hours

Female 14 20

15 20

16 19

17 20

18 20

19 20

Chapter 4 Finding the Meaning

67

Gender Age Hours

Male 14 19

15 20

16 20

17 20

18 20

19 20

We can also have multiple value columns. So, to show the average

grade and hours of study by gender, we can run the code in Listing 4-25.

Listing 4-25.  Average Grade and Hours by Gender

pd.pivot_table(df,

 index=['gender'],

 aggfunc='mean',

 values=['grade','hours'])

Gender Grade Hours

Female 82.7173 10.932

Male 82.3948 11.045

We can also perform pivot tables on subsets of the data. First, select

your data, then do a standard pivot on that selection. So, to show the

average grade and hours of study by gender for students who are 17 years

old, we can run the code in Listing 4-26.

Listing 4-26.  Average Grade and Hours by Gender

df2 = df.loc[df['age'] == 17]

pd.pivot_table(df2,

Chapter 4 Finding the Meaning

68

 index=['gender'],

 aggfunc='mean',

 values=['grade','hours'])

Gender Grade Hours

Female 83.599435 10.943503

Male 82.949721 11.268156

Finally, we can include totals on our Python pivot tables, as shown in

Listing 4-27.

Listing 4-27.  Average Grade and Hours by Gender

df2 = df.loc[df['age'] == 17]

pd.pivot_table(df2,

 index=['gender'],

 aggfunc='mean',

 values=['grade','hours'],

 margins='True')

Gender Grade Hours

Female 83.599435 10.943503

Male 82.949721 11.268156

All 83.272753 11.106742

�Your Turn
Can you create a pivot table showing the average grade by gender of

people who had more than two hours of exercise?

Chapter 4 Finding the Meaning

69© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_5

CHAPTER 5

Visualizing Data
�Data Quality Report
When you have looked at enough datasets, you will develop a set of

questions you want answered about the data to ascertain how good the

dataset is. This following scripts combine to form a data quality report that

I use to evaluate the datasets that I work with.

Listing 5-1.  Load Dataset from CSV

import the data

import pandas as pd

Location = "datasets\gradedata.csv"

df = pd.read_csv(Location)

df.head()

df.mode().transpose()

Listing 5-2.  Finding Data Types of Each Column

data_types = pd.DataFrame(df.dtypes,

 columns=['Data Type'])

data_types

Listing 5-3.  Counting Number of Missing Observations by Column

missing_data_counts = pd.DataFrame(df.isnull().sum(),

 columns=['Missing Values'])

missing_data_counts

70

Listing 5-4.  Counting Number of Present Observations by Column

present_data_counts = pd.DataFrame(df.count(),

 columns=['Present Values'])

present_data_counts

Listing 5-5.  Counting Number of Unique Observations by Column

unique_value_counts = pd.DataFrame(

 columns=['Unique Values'])

for v in list(df.columns.values):

 unique_value_counts.loc[v] = [df[v].nunique()]

unique_value_counts

Listing 5-6.  Finding the Minimum Value for Each Column

minimum_values = pd.DataFrame(columns=[

 'Minimum Values'])

for v in list(df.columns.values):

 minimum_values.loc[v] = [df[v].min()]

minimum_values

Listing 5-7.  Finding the Maximum Value for Each Column

maximum_values = pd.DataFrame(

 columns=['Maximum Values'])

for v in list(df.columns.values):

 maximum_values.loc[v] = [df[v].max()]

maximum_values

Listing 5-8.  Joining All the Computed Lists into 1 Report

pd.concat([present_data_counts,

 missing_data_counts,

 unique_value_counts,

Chapter 5 Visualizing Data

71

 minimum_values,

 maximum_values],

 axis=1)

�Your Turn
Can you create a data quality report for the datasets/tamiami.csv

dataset?

�Graph a Dataset: Line Plot
To create a simple line plot, input the code from Listing 5-9.

Listing 5-9.  Line Plotting Your Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,83,77,78,95]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

%matplotlib inline

df.plot()

When you run it, you should see a graph that looks like Figure 5-1.

Chapter 5 Visualizing Data

72

Customizing the graph is easy, but you need to add the matplotlib

library first.

Add the code in Listing 5-10 to what you did already.

Listing 5-10.  Code to Plot a Customized Graph

import matplotlib.pyplot as plt

df.plot()

displayText = "my annotation"

xloc = 1

yloc = df['Grades'].max()

xtext = 8

ytext = 0

plt.annotate(displayText,

 xy=(xloc, yloc),

 xytext=(xtext,ytext),

 xycoords=('axes fraction', 'data'),

 textcoords='offset points')

Figure 5-1.  Simple Line Plot

Chapter 5 Visualizing Data

73

Ok, the annotate command has pretty good documentation, located at

http://matplotlib.org/api/pyplot_api.html. But let's tear apart what

we typed:

displayText: the text we want to show for this

annotation

xloc, yloc: the coordinates of the data point we

want to annotate

xtext, ytext: coordinates of where we want the

text to appear using the coordinate system specified

in textcoords

xycoords: sets the coordinate system to use to find

the data point; it can be set separately for x and y

textcoords: sets the coordinate system to use to

place the text

Finally, we can add an arrow linking the data point annotated to the

text annotation (Listing 5-11).

Listing 5-11.  Code to Plot a Customized Graph

df.plot()

displayText = "my annotation"

xloc = 1

yloc = df['Grades'].max()

xtext = 8

ytext = -150

plt.annotate(displayText,

 xy=(xloc, yloc),

 arrowprops=dict(facecolor='black',

 shrink=0.05),

Chapter 5 Visualizing Data

http://matplotlib.org/api/pyplot_api.html

74

 xytext=(xtext,ytext),

 xycoords=('axes fraction', 'data'),

 textcoords='offset points')

All we did is adjust the offset of the text so that there was enough room

between the data and the annotation to actually see the arrow. We did this

by changing the ytext value from 0 to -150. Then, we added the setting for

the arrow.

More information about creating arrows can be found on the

documentation page for annotate at http://matplotlib.org/users/

annotations_intro.html.

�Your Turn
Take the same dataset we used in this example and add an annotation to

Bob's 76 that says “Wow!”

�Graph a Dataset: Bar Plot
To create a bar plot, input the code in Listing 5-12.

Listing 5-12.  Bar Plotting Your Dataset

import matplotlib.pyplot as plt

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

status = ['Senior','Freshman','Sophomore','Senior',

 'Junior']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

Chapter 5 Visualizing Data

http://matplotlib.org/users/annotations_intro.html
http://matplotlib.org/users/annotations_intro.html

75

df = pd.DataFrame(data = GradeList,

 columns=['Names', 'Grades'])

%matplotlib inline

df.plot(kind='bar')

Once you run it, you will get a simple bar plot, but the titles on the

x-axis are the numbers 0–4.

But if we convert the Names column into the index, we can improve the

graph. So, first, we need to add the code in Listing 5-13.

Listing 5-13.  Adding Code to Plot Your Dataset

df2 = df.set_index(df['Names'])

df2.plot(kind="bar")

We will then get a graph that looks like Figure 5-3.

Figure 5-2.  Simple Bar Plot

Chapter 5 Visualizing Data

76

�Your Turn
Can you change the code to create a bar plot where the status is the label?

�Graph a Dataset: Box Plot
To create a box plot, input the code in Listing 5-14.

Listing 5-14.  Box Plotting Your Dataset

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

names = ['Bob','Jessica','Mary','John','Mel']

Figure 5-3.  Bar Plot with Axis Titles

Chapter 5 Visualizing Data

77

grades = [76,95,77,78,99]

gender = ['Male','Female','Female','Male','Female']

status = ['Senior','Senior','Junior','Junior','Senior']

GradeList = zip(names,grades,gender)

df = pd.DataFrame(data = GradeList, columns=['Names', 'Grades',

'Gender'])

df.boxplot(column='Grades')

Once you run it, you will get a simple box plot.

Now, we can use a single command to create categorized graphs (in

this case, categorized by gender). See Listing 5-15.

Listing 5-15.  Adding Code to Categorize Your Box Plot

df.boxplot(by='Gender', column='Grades')

And we will then get a graph that looks like Figure 5-5. See Listing 5-16.

Figure 5-4.  Simple Box Plot

Chapter 5 Visualizing Data

78

Listing 5-16.  Categorized Box Plots

And, finally, to adjust the y-axis so that it runs from 0 to 100, we can

run the code in Listing 5-17.

Listing 5-17.  Adding Code to Adjust the Y-axis

axis1 = df.boxplot(by='Gender', column='Grades')

axis1.set_ylim(0,100)

It will produce a graph like the one in Figure 5-6.

Figure 5-5.  Categorized Box Plot

Chapter 5 Visualizing Data

79

�Your Turn
Using the dataset we just created:

•	 Can you create a box plot of the grades categorized by

student status?

•	 Can you create that box plot with a y-axis that runs

from 50 to 110?

�Graph a Dataset: Histogram
Because of the nature of histograms, we really need more data than is

found in the example dataset we have been working with. Enter the code

from Listing 5-18 to import the larger dataset.

Figure 5-6.  Box Plot Grouped by Gender

Chapter 5 Visualizing Data

80

Listing 5-18.  Importing Dataset from CSV File

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

To create a simple histogram, we can simply add the code in Listing 5-19.

Listing 5-19.  Creating a Histogram not Creating a Box Plot

df.hist()

And because pandas is not sure which column you wish to count the

values of, it gives you histograms for all the columns with numeric values.

Figure 5-7.  Simple Histogram

Chapter 5 Visualizing Data

81

In order to see a histogram for just hours, we can specify it as in

Listing 5-20.

Listing 5-20.  Creating Histogram for Single Column

df.hist(column="hours")

And to see histograms of hours separated by gender, we can use

Listing 5-21.

Listing 5-21.  Categorized Histogram

df.hist(column="hours", by="gender")

Figure 5-8.  Single Column Histogram

Chapter 5 Visualizing Data

82

�Your Turn
Can you create an age histogram categorized by gender?

�Graph a Dataset: Pie Chart
To create a pie chart, input the code from Listing 5-22.

Listing 5-22.  Pie Charting Your Dataset

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

names = ['Bob','Jessica','Mary','John','Mel']

absences = [3,0,1,0,8]

detentions = [2,1,0,0,1]

warnings = [2,1,5,1,2]

Figure 5-9.  Categorized Histogram

Chapter 5 Visualizing Data

83

GradeList = zip(names,absences,detentions,warnings)

columns=['Names', 'Absences', 'Detentions','Warnings']

df = pd.DataFrame(data = GradeList, columns=columns)

df

This code creates a dataset of student rule violations. Next, in a new

cell, we will create a column to show the total violations or demerits per

student (Listing 5-23).

Listing 5-23.  Creating New Column

df['TotalDemerits'] = df['Absences'] +

 df['Detentions'] + df['Warnings']

df

Finally, to actually create a pie chart of the number of demerits, we can

just run the code from Listing 5-24.

Listing 5-24.  Creating Pie Chart of Demerits

plt.pie(df['TotalDemerits'])

Once you run it, you will get a simple pie chart (Figure 5-10).

Chapter 5 Visualizing Data

84

But since it is a bit plain (and a bit elongated), let's try the code from

Listing 5-25 in a new cell.

Listing 5-25.  Creating a Customized Pie Chart

plt.pie(df['TotalDemerits'],

 labels=df['Names'],

 explode=(0,0,0,0,0.15),

 startangle=90,

 autopct='%1.1f%%',)

plt.axis('equal')

plt.show()

Line 2: This adds the students' names as labels to

the pie pieces.

Line 3: This is what explodes out the pie piece for

the fifth student. You can increase or decrease the

amount to your liking.

Figure 5-10.  Simple Pie Chart

Chapter 5 Visualizing Data

85

Line 4: This is what rotates the pie chart to different

points.

Line 5: This is what formats the numeric labels on

the pie pieces.

Line 7: This is what forces the pie to be circular.

And you will see a pie chart that looks like Figure 5-11.

Figure 5-11.  Customized Pie Chart

Chapter 5 Visualizing Data

86

�Your Turn
What if, instead of highlighting the worst student, we put a spotlight on

the best one? Let's rotate the chart and change the settings so we are

highlighting John instead of Mel.

�Graph a Dataset: Scatter Plot
The code in Listing 5-26 will allow us to generate a simple scatter plot.

Listing 5-26.  Creating a Scatter Plot

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

dataframe = pd.DataFrame({'Col':

 np.random.normal(size=200)})

plt.scatter(dataframe.index, dataframe['Col'])

Line 4: specifies that figures should be shown inline

Line 6: generates a random dataset of 200 values

Line 7: creates a scatter plot using the index of the

dataframe as the x and the values of column Col as

the y

You should get a graph that looks something like Figure 5-12.

Chapter 5 Visualizing Data

87

Looking at our plot, there doesn't seem to be any pattern to the data.

It's random!

�Your Turn
Create a scatter plot of the hours and grade data in datasets/gradedata.csv.

Do you see a pattern in the data?

Figure 5-12.  Simple Scatterplot

Chapter 5 Visualizing Data

89© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0_6

CHAPTER 6

Practice Problems
In this chapter, you will find problems you can use to practice what you

have learned. Feel free to use any of the techniques that you have learned,

but don’t use them all. It would be overkill. Have fun, and good luck!

�Analysis Exercise 1
For this exercise, you can find the data in datasets/algebradata.csv.

Frank Mulligrew is the algebra coordinator for Washington, DC public

schools. He is required by the school board to gather some statistics. Using

the information about his class, calculate the following:

	 1.	 Percentage of students with a passing grade

	 2.	 Percentage of women with a passing grade

	 3.	 Average hours of study for all students

	 4.	 Average hours of study for students with a passing

grade

90

�Analysis Exercise 2
You can find the data in the datasets/axisdata file.

Carlos Hugens is the sales manager for Axis Auto Sales, a low-cost

regional chain of used car lots. Carlos is getting ready for his annual

sales meeting and is looking for the best way to improve his sales group’s

performance. His data includes the gender, years of experience, sales

training, and hours worked per week for each team member. It also includes

the average cars sold per month by each salesperson. Find out the following:

	 1.	 Average cars sold per month

	 2.	 Max cars sold per month

	 3.	 Min cars sold per month

	 4.	 Average cars sold per month by gender

	 5.	 Average hours worked by people selling more than

three cars per month

	 6.	 Average years of experience

	 7.	 Average years of experience for people selling more

than three cars per month

	 8.	 Average cars sold per month sorted by whether they

have had sales training

What do you think is the best indicator of whether someone is a good

salesperson?

�Analysis Exercise 3
The data can be found in datasets/dvddata.xlsx.

Baumgartner DVD’s sells high-quality DVD duplicators nationwide.

You have just been promoted to sales manager and tasked with analyzing

sales trends and making decisions about the best way to handle your sales

in the future.

Chapter 6 Practice Problems

91

Right now, each of your salespeople covers one or more districts within

the same region. Your salespeople contact their customers through either

emails, phone calls, or office visits. Emails take about one minute each.

Phone calls take about twenty minutes each, and office visits take about

two hours. Your staff people work a standard forty-hour week.

	 1.	 Figure out the impact of communication methods

on number of duplicators sold in a month.

	 2.	 Build a model that will predict the number of sales

given the number of clients and frequency of each

mode of communication.

�Analysis Exercise 4
The data can be found in datasets/tamiami.xlsx.

Tami, from Miami, wants to open a tamale cart in New York City. She

already knows her expenses, but she doesn’t know what to charge. She was

able to secure the average daily sales data for hot-dog carts by district in the

NYC area. Analyze this data to figure out a relationship between price and

quantity sold. You can use this relationship as a benchmark for what people

are willing to spend for a quick lunch. You need to provide the following:

	 1.	 The list of other relevant factors (other than price)

that affect sales (if any)

	 2.	 The equation for sales quantity

�Analysis Project
The data can be found in datasets/southstyle.xlsx.

South Carolina–based SouthStyle Foods, a leading manufacturer of

sausage, has been selling its products under the brand name SouthStyle

for the last 40 years. SouthStyle Foods is engaged in the manufacturing and

Chapter 6 Practice Problems

92

marketing of high-quality southern-style processed foods such as sausage,

bacon, hoppin’ john, collard greens, etc. The company provides a perfect

blend of traditional southern-style taste tailored to the requirements

and preferences of the modern consumer. It combines better taste with

natural purity, innovative packaging, and care for health and comes at a

reasonable price.

With quality food products and focus on customer satisfaction,

SouthStyle Foods maintains a leading position in the processed food section

by widening its customer base and making its products available at affordable

prices both in South Carolina and nationwide. As a part of its initiatives, the

company planned to expand its business to increase the sales of its products

in other regions. However, for this, the company wants to know the factors

that can increase sales across different states. However, with some new

companies coming up, very recently the company witnessed an increase in

competition across the industry, resulting in a decrease in its sales.

To discuss the issues, the president, Ashley Sears, called a meeting

of the company’s senior officers. During a rather lively discussion, they

discussed many factors for the fall in sales. However, no common factor

emerged. The marketing VP suggested hiring a consultant experienced in

business research, and everyone agreed.

SouthStyle Foods hired your marketing research agency, Care

Research, for the job. After listening to the problem, your boss thought of

using a cross-sectional analysis of the problem, as there are 30 territories

from which it must collect data. Your firm started identifying the variables

that, according to the company, might have an impact on sales. Based on

the collected information (Exhibit I) and the previous studies done, you

came up with five important variables that are expected to be crucial in

determining the sales. These variables are market potential in the territory,

number of shops selling processed foods, number of brokers, number of

popular brands in that territory, and population of that territory.

The marketing VP wants to know the most important factor or factors to

focus on. He also wants to know the likely future demand.

Chapter 6 Practice Problems

93

�Required Deliverables

	 1.	 Identify the most important factors for SouthStyle

Foods to focus on.

	 2.	 Create a formula or model that will allow SouthStyle

Foods to forecast their sales as they move into new

territories.

Chapter 6 Practice Problems

95© A.J. Henley and Dave Wolf 2018
A.J. Henley and D. Wolf, Learn Data Analysis with Python,
https://doi.org/10.1007/978-1-4842-3486-0

Index

A
Anaconda, 2, 3

B
Bar plot, 74–76
Box plot, 76–79

C
Cleaning data

calculating and removing
outliers

interquartile range (IQR),
21–22

standard deviations, 20–21
description, 19
filtering inappropriate values,

24–25
finding duplicate rows, 26–27
pandas dataframes, missing

data, 22–24
removing punctuation, column

contents, 27–28
removing whitespace, column

contents, 28–29
SSNs, phone numbers, and zip

codes, 31–32

standardizing dates, 29–31
Combining data, multiple excel

files, 11–13
Computing aggregate statistics

create dataset, 55–56
matching rows, 58–59
measures, central tendency,

56–57
sorting data, 59–60
starting dataset, 57
variance, 57

Correlation, 60–62

D, E, F, G
Data quality report, 69–71
Datasets

bar plot, 74–76
box plot, 76–79
histograms, 79–82
line plot, 71–74
pie chart, 82–86
scatter plot, 86–87
unzipping, 4

H
Histograms, 79–82

https://doi.org/10.1007/978-1-4842-3486-0

96

I
Interquartile range (IQR), 21–22

J, K
Jupyter Notebook, 2

L, M, N
Line plot, 71–74
Loading data

CSV files, 5–7
Excel files, 8–9
SQL, 13–14

O
Organizing data

change column name, 45–47
description, 42
filter rows, 50–51
finding matching rows, 48–50
random sampling dataframe,

52–53
removing and adding columns,

42–44
selecting columns, 44–45
selecting rows, 51–52
setting column names to lower

case, 47

P, Q
Pie chart, 82–86
Pivot tables

average grade and hours,
gender, 65–68

averages of numeric
columns, 65

dataframe and index, 65
load data, 65
max grade, gender and age,

66–67
minimum grade, gender, 66

Practice problems
algebra data, 89
Axis Auto Sales, 90
DVD sales, 90–91
SouthStyle Foods, 91–92
Tami, 91

R
Random numbers, 16–18
Regression, 62–63
Regression without Intercept, 64

S, T, U
Saving data

CSV files, 7–8
Excel files, 10–11
SQL, 15–16

Index

97

Scatter plot, 86–87
SouthStyle Foods, 91–92

V, W, X, Y, Z
Variables

applying functions
bins, 35
column, 36

group, 36
loading dataframe, 35

columns
conditional, 38–39
functions, 39–40

converting string to numeric,
40–41

data binning, 33–34
ranking rows of data, 37

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: How to Use This Book
	Installing Jupyter Notebook
	What Is Jupyter Notebook?
	What Is Anaconda?
	Getting Started
	Getting the Datasets for the Workbook’s Exercises

	Chapter 2: Getting Data Into and Out of Python
	Loading Data from CSV Files
	Your Turn

	Saving Data to CSV
	Your Turn

	Loading Data from Excel Files
	Your Turn

	Saving Data to Excel Files
	Your Turn

	Combining Data from Multiple Excel Files
	Your Turn

	Loading Data from SQL
	Your Turn

	Saving Data to SQL
	Your Turn

	Random Numbers and Creating Random Data
	Your Turn

	Chapter 3: Preparing Data Is Half the Battle
	Cleaning Data
	Calculating and Removing Outliers
	Your Turn

	Missing Data in Pandas Dataframes
	Your Turn

	Filtering Inappropriate Values
	Your Turn

	Finding Duplicate Rows
	Your Turn

	Removing Punctuation from Column Contents
	Removing Whitespace from Column Contents
	Standardizing Dates
	Standardizing Text like SSNs, Phone Numbers, and Zip Codes

	Creating New Variables
	Binning Data
	Your Turn

	Applying Functions to Groups, Bins, and Columns
	Your Turn

	Ranking Rows of Data
	Your Turn

	Create a Column Based on a Conditional
	Your Turn

	Making New Columns Using Functions
	Your Turn

	Converting String Categories to Numeric Variables
	Your Turn

	Organizing the Data
	Removing and Adding Columns
	Your Turn

	Selecting Columns
	Your Turn

	Change Column Name
	Your Turn

	Setting Column Names to Lower Case
	Your Turn

	Finding Matching Rows
	Your Turn

	Filter Rows Based on Conditions
	Your Turn

	Selecting Rows Based on Conditions
	Your Turn

	Random Sampling Dataframe
	Your Turn

	Chapter 4: Finding the Meaning
	Computing Aggregate Statistics
	Your Turn

	Computing Aggregate Statistics on Matching Rows
	Your Turn

	Sorting Data
	Your Turn

	Correlation
	Your Turn

	Regression
	Your Turn

	Regression without Intercept
	Your Turn

	Basic Pivot Table
	Your Turn

	Chapter 5: Visualizing Data
	Data Quality Report
	Your Turn

	Graph a Dataset: Line Plot
	Your Turn

	Graph a Dataset: Bar Plot
	Your Turn

	Graph a Dataset: Box Plot
	Your Turn

	Graph a Dataset: Histogram
	Your Turn

	Graph a Dataset: Pie Chart
	Your Turn

	Graph a Dataset: Scatter Plot
	Your Turn

	Chapter 6: Practice Problems
	Analysis Exercise 1
	Analysis Exercise 2
	Analysis Exercise 3
	Analysis Exercise 4
	Analysis Project
	Required Deliverables

	Index

