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CHAPTER 1

How to Use This Book
If you are already using Python for data analysis, just browse this book’s 

table of contents. You will probably find a bunch of things that you wish 

you knew how to do in Python. If so, feel free to turn directly to that chapter 

and get to work. Each lesson is, as much as possible, self-contained.

Be warned! This book is more a workbook than a textbook.

If you aren’t using Python for data analysis, begin at the beginning. If 

you work your way through the whole workbook, you should have a better 

of idea of how to use Python for data analysis when you are done.

If you know nothing at all about data analysis, this workbook might not 

be the place to start. However, give it a try and see how it works for you.

�Installing Jupyter Notebook
The fastest way to install and use Python is to do what you already know 

how to do, and you know how to use your browser. Why not use Jupyter 

Notebook?
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�What Is Jupyter Notebook?
Jupyter Notebook is an interactive Python shell that runs in your browser. 

When installed through Anaconda, it is easy to quickly set up a Python 

development environment. Since it’s easy to set up and easy to run, it will 

be easy to learn Python.

Jupyter Notebook turns your browser into a Python development 

environment. The only thing you have to install is Anaconda. In 

essence, it allows you to enter a few lines of Python code, press 

CTRL+Enter, and execute the code. You enter the code in cells and 

then run the currently selected cell. There are also options to run all 

the cells in your notebook. This is useful if you are developing a larger 

program.

�What Is Anaconda?
Anaconda is the easiest way to ensure that you don’t spend all day 

installing Jupyter. Simply download the Anaconda package and run the 

installer. The Anaconda software package contains everything you need 

to create a Python development environment. Anaconda comes in two 

versions—one for Python 2.7 and one for Python 3.x. For the purposes of 

this guide, install the one for Python 2.7.

Anaconda is an open source data-science platform. It contains over 

100 packages for use with Python, R, and Scala. You can download and 

install Anaconda quickly with minimal effort. Once installed, you can 

update the packages or Python version or create environments for different 

projects.

Chapter 1  How to Use This Book
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�Getting Started

	 1.	 Download and install Anaconda at https://www.

anaconda.com/download.

	 2.	 Once you’ve installed Anaconda, you’re ready to 

create your first notebook. Run the Jupyter Notebook 

application that was installed as part of Anaconda.

	 3.	 Your browser will open to the following address: 

http://localhost:8888. If you’re running 

Internet Explorer, close it. Use Firefox or Chrome 

for best results. From there, browse to http://

localhost:8888.

	 4.	 Start a new notebook. On the right-hand side of the 

browser, click the drop-down button that says "New" 

and select Python or Python 2.

	 5.	 This will open a new iPython notebook in another 

browser tab. You can have many notebooks open in 

many tabs.

	 6.	 Jupyter Notebook contains cells. You can type Python 

code in each cell. To get started (for Python 2.7), 

type print "Hello, World!" in the first cell and 

hit CTRL+Enter. If you’re using Python 3.5, then the 

command is print("Hello, World!").

Chapter 1  How to Use This Book
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�Getting the Datasets for the Workbook’s 
Exercises

	 1.	 Download the dataset files from http://www.

ajhenley.com/dwnld.

	 2.	 Upload the file datasets.zip to Anaconda in the 

same folder as your notebook.

	 3.	 Run the Python code in Listing 1-1 to unzip the 

datasets.

Listing 1-1.  Unzipping dataset.zip

path_to_zip_file = "datasets.zip"

directory_to_extract_to = ""

import zipfile

zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')

zip_ref.extractall(directory_to_extract_to)

zip_ref.close()

Chapter 1  How to Use This Book
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CHAPTER 2

Getting Data Into 
and Out of Python
The first stage of data analysis is getting the data. Moving your data from 

where you have it stored into your analytical tools and back out again can 

be a difficult task if you don't know what you are doing. Python and its 

libraries try to make it as easy as possible.

With just a few lines of code, you will be able to import and export data 

in the following formats:

•	 CSV

•	 Excel

•	 SQL

�Loading Data from CSV Files
Normally, data will come to us as files or database links. See Listing 2-1 to 

learn how to load data from a CSV file.

Listing 2-1.  Loading Data from CSV File

import pandas as pd

Location = "datasets/smallgradesh.csv"

df = pd.read_csv(Location, header=None)
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Now, let's take a look at what our data looks like (Listing 2-2):

Listing 2-2.  Display First Five Lines of Data

df.head()

As you can see, our dataframe lacks column headers. Or, rather, there 

are headers, but they weren't loaded as headers; they were loaded as row 

one of your data. To load data that includes headers, you can use the code 

shown in Listing 2-3.

Listing 2-3.  Loading Data from CSV File with Headers

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

Then, as before, we take a look at what the data looks like by running 

the code shown in Listing 2-4.

Listing 2-4.  Display First Five Lines of Data

df.head()

If you have a dataset that doesn't include headers, you can add them 

afterward. To add them, we can use one of the options shown in Listing 2-5.

Listing 2-5.  Loading Data from CSV File and Adding Headers

import pandas as pd

Location = "datasets/smallgrades.csv"

# To add headers as we load the data...

df = pd.read_csv(Location, names=['Names','Grades'])

# To add headers to a dataframe

df.columns = ['Names','Grades']

Chapter 2  Getting Data Into and Out of Python
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�Your Turn
Can you make a dataframe from a file you have uploaded and imported 

on your own? Let's find out. Go to the following website, which contains 

U.S. Census data (http://census.ire.org/data/bulkdata.html), and 

download the CSV datafile for a state. Now, try to import that data into 

Python.

�Saving Data to CSV
Maybe you want to save your progress when analyzing data. Maybe you are 

just using Python to massage some data for later analysis in another tool. 

Or maybe you have some other reason to export your dataframe to a CSV 

file. The code shown in Listing 2-6 is an example of how to do this.

Listing 2-6.  Exporting a Dataset to CSV

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList, columns=['Names','Grades'])

df.to_csv('studentgrades.csv',index=False,header=False)

Lines 1 to 6 are the lines that create the dataframe. Line 7 is the code to 

export the dataframe df to a CSV file called studentgrades.csv.

The only parameters we use are index and header. Setting these 

parameters to false will prevent the index and header names from 

being exported. Change the values of these parameters to get a better 

understanding of their use.

Chapter 2  Getting Data Into and Out of Python
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If you want in-depth information about the to_csv method, you can, of 

course, use the code shown in Listing 2-7.

Listing 2-7.  Getting Help on to_csv

df.to_csv?

�Your Turn
Can you export the dataframe created by the code in Listing 2-8 to CSV?

Listing 2-8.  Creating a Dataset for the Exercise

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

Degrees = zip(names,grades,bsdegrees,msdegrees,phddegrees)

columns = ['Names','Grades','BS','MS','PhD']

df = pd.DataFrame(data = Degrees, columns=column)

df

�Loading Data from Excel Files
Normally, data will come to us as files or database links. Let's see how to 

load data from an Excel file (Listing 2-9).
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Listing 2-9.  Loading Data from Excel File

import pandas as pd

Location = "datasets/gradedata.xlsx"

df = pd.read_excel(Location)

Now, let's take a look at what our data looks like (Listing 2-10).

Listing 2-10.  Display First Five Lines of Data

df.head()

If you wish to change or simplify your column names, you can run the 

code shown in Listing 2-11.

Listing 2-11.  Changing Column Names

df.columns = ['first','last','sex','age','exer','hrs','grd','addr']

df.head()

�Your Turn
Can you make a dataframe from a file you have uploaded and imported 

on your own? Let's find out. Go to https://www.census.gov/support/

USACdataDownloads.html and download one of the Excel datafiles at the 

bottom of the page. Now, try to import that data into Python.
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�Saving Data to Excel Files
The code shown in Listing 2-12 is an example of how to do this.

Listing 2-12.  Exporting a Dataframe to Excel

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

        columns=['Names','Grades'])

writer = pd.ExcelWriter('dataframe.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

writer.save()

If you wish, you can save different dataframes to different sheets, and 

with one .save() you will create an Excel file with multiple worksheets 

(see Listing 2-13).

Listing 2-13.  Exporting Multiple Dataframes to Excel

writer = pd.ExcelWriter('dataframe.xlsx',engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

df2.to_excel(writer, sheet_name='Sheet2')

writer.save()

Note T his assumes that you have another dataframe already 
loaded into the df2 variable.
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�Your Turn
Can you export the dataframe created by the code shown in Listing 2-14 to 

Excel?

Listing 2-14.  Creating a Dataset for the Exercise

import pandas as pd

names = ['Nike','Adidas','New Balance','Puma',’Reebok’]

grades = [176,59,47,38,99]

PriceList = zip(names,prices)

df = pd.DataFrame(data = PriceList, columns=['Names',’Prices’])

�Combining Data from Multiple Excel Files
In earlier lessons, we opened single files and put their data into individual 

dataframes. Sometimes we will need to combine the data from several 

Excel files into the same dataframe.

We can do this either the long way or the short way. First, let's see the 

long way (Listing 2-15).

Listing 2-15.  Long Way

import pandas as pd

import numpy as np

all_data = pd.DataFrame()

df = pd.read_excel("datasets/data1.xlsx")

all_data = all_data.append(df,ignore_index=True)

df = pd.read_excel("datasets/data2.xlsx")

all_data = all_data.append(df,ignore_index=True)
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df = pd.read_excel("datasets/data3.xlsx")

all_data = all_data.append(df,ignore_index=True)

all_data.describe()

•	 Line 4: First, let's set all_data to an empty dataframe.

•	 Line 6: Load the first Excel file into the dataframe df.

•	 Line 7: Append the contents of df to the dataframe 

all_data.

•	 Lines 9 & 10: Basically the same as lines 6 & 7, but for 

the next Excel file.

Why do we call this the long way? Because if we were loading a 

hundred files instead of three, it would take hundreds of lines of code to do 

it this way. In the words of my friends in the startup community, it doesn't 

scale well. The short way, however, does scale.

Now, let's see the short way (Listing 2-16).

Listing 2-16.  Short Way

import pandas as pd

import numpy as np

import glob

all_data = pd.DataFrame()

for f in glob.glob("datasets/data*.xlsx"):

    df = pd.read_excel(f)

    all_data = all_data.append(df,ignore_index=True)

all_data.describe()

•	 Line 3: Import the glob library.

•	 Line 5: Let's set all_data to an empty dataframe.

•	 Line 6: This line will loop through all files that match 

the pattern.
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•	 Line 7: Load the Excel file in f into the dataframe df.

•	 Line 8: Append the contents of df to the dataframe 

all_data.

Since we only have three datafiles, the difference in code isn't that 

noticeable. However, if we were loading a hundred files, the difference in 

the amount of code would be huge. This code will load all the Excel files 

whose names begin with data that are in the datasets directory no matter 

how many there are.

�Your Turn
In the datasets/weekly_call_data folder, there are 104 files of weekly call 

data for two years. Your task is to try to load all of that data into one dataframe.

�Loading Data from SQL
Normally, our data will come to us as files or database links. Let's learn 

how to load our data from a sqlite database file (Listing 2-17).

Listing 2-17.  Load Data from sqlite

import pandas as pd

from sqlalchemy import create_engine

# Connect to sqlite db

db_file = r'datasets/gradedata.db'

engine = create_engine(r"sqlite:///{}"

        .format(db_file))

sql = 'SELECT * from test'

        'where Grades in (76,77,78)'

sales_data_df = pd.read_sql(sql, engine)

sales_data_df
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This code creates a link to the database file called gradedata.db and 

runs a query against it. It then loads the data resulting from that query into 

the dataframe called sales_data_df. If you don't know the names of the 

tables in a sqlite database, you can find out by changing the SQL statement 

to that shown in Listing 2-18.

Listing 2-18.  Finding the Table Names

sql = "select name from sqlite_master"

    "where type = 'table';"

Once you know the name of a table you wish to view (let's say it was 

test), if you want to know the names of the fields in that table, you can 

change your SQL statement to that shown in Listing 2-19.

Listing 2-19.  A Basic Query

sql = "select * from test;"

Then, once you run sales_data_df.head() on the dataframe, you will 

be able to see the fields as headers at the top of each column.

As always, if you need more information about the command, you can 

run the code shown in Listing 2-20.

Listing 2-20.  Get Help on read_sql

sales_data_df.read_sql?

�Your Turn
Can you load data from the datasets/salesdata.db database?
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�Saving Data to SQL
See Listing 2-21 for an example of how to do this.

Listing 2-21.  Create Dataset to Save

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

    columns=['Names', 'Grades'])

df

To export it to SQL, we can use the code shown in Listing 2-22.

Listing 2-22.  Export Dataframe to sqlite

import os

import sqlite3 as lite

db_filename = r'mydb.db'

con = lite.connect(db_filename)

df.to_sql('mytable',

    con,

    flavor='sqlite',

    schema=None,

    if_exists='replace',

index=True,

index_label=None,

chunksize=None,

dtype=None)

con.close()
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•	 Line 14: mydb.db is the path and name of the sqlite 

database you wish to use.

•	 Line 18: mytable is the name of the table in the 

database.

As always, if you need more information about the command, you can 

run the code shown in Listing 2-23.

Listing 2-23.  Get Help on to_sql

df.to_sql?

�Your Turn
This might be a little tricky, but can you create a sqlite table that contains 

the data found in datasets/gradedata.csv?

�Random Numbers and Creating  
Random Data
Normally, you will use the techniques in this guide with datasets of real 

data. However, sometimes you will need to create random values.

Say we wanted to make a random list of baby names. We could get 

started as shown in Listing 2-24.

Listing 2-24.  Getting Started

import pandas as pd

from numpy import random

from numpy.random import randint

names = ['Bob','Jessica','Mary','John','Mel']
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First, we import our libraries as usual. In the last line, we create a list of 

the names we will randomly select from.

Next, we add the code shown in Listing 2-25.

Listing 2-25.  Seeding Random Generator

random.seed(500)

This seeds the random number generator. If you use the same seed, 

you will get the same "random” numbers.

What we will try to do is this:

	 1.	 randint(low=0,high=len(names))

Generates a random integer between zero and the 

length of the list names.

	 2.	 names[n]

Selects the name where its index is equal to n.

	 3.	 for i in range(n)

Loops until i is equal to n, i.e., 1,2,3,….n.

	 4.	 random_names =

Selects a random name from the name list and does 

this n times.

We will do all of this in the code shown in Listing 2-26.

Listing 2-26.  Selecting 1000 Random Names

randnames = []

for i in range(1000):

    name = names[randint(low=0,high=len(names))]

    randnames.append(name)
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Now we have a list of 1000 random names saved in our random_names 

variable. Let's create a list of 1000 random numbers from 0 to 1000 

(Listing 2-27).

Listing 2-27.  Selecting 1000 Random Numbers

births = []

for i in range(1000):

    births.append(randint(low=0, high=1000))    

And, finally, zip the two lists together and create the dataframe 

(Listing 2-28).

Listing 2-28.  Creating Dataset from the Lists of Random Names and 

Numbers

BabyDataSet2 = list(zip(randnames,births))

df = pd.DataFrame(data = BabyDataSet2,

        columns=['Names', 'Births'])

df

�Your Turn
Create a dataframe called parkingtickets with 250 rows containing a 

name and a number between 1 and 25.
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CHAPTER 3

Preparing Data Is Half 
the Battle
The second step of data analysis is cleaning the data. Getting data ready for 

analytical tools can be a difficult task. Python and its libraries try to make it 

as easy as possible.

With just a few lines of code, you will be able to get your data ready for 

analysis. You will be able to

•	 clean the data;

•	 create new variables; and

•	 organize the data.

�Cleaning Data
To be useful for most analytical tasks, data must be clean. This means it 

should be consistent, relevant, and standardized. In this chapter, you will 

learn how to

•	 remove outliers;

•	 remove inappropriate values;

•	 remove duplicates;
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•	 remove punctuation;

•	 remove whitespace;

•	 standardize dates; and

•	 standardize text.

�Calculating and Removing Outliers
Assume you are collecting data on the people you went to high school 

with. What if you went to high school with Bill Gates? Now, even though 

the person with the second-highest net worth is only worth $1.5 million, 

the average of your entire class is pushed up by the billionaire at the top. 

Finding the outliers allows you to remove the values that are so high or so 

low that they skew the overall view of the data.

We cover two main ways of detecting outliers:

	 1.	 Standard Deviations: If the data is normally 

distributed, then 95 percent of the data is within 1.96 

standard deviations of the mean. So we can drop the 

values either above or below that range.

	 2.	 Interquartile Range (IQR): The IQR is the 

difference between the 25 percent quantile and the 

75 percent quantile. Any values that are either lower 

than Q1 - 1.5 x IQR or greater than Q3 + 1.5 x IQR are 

treated as outliers and removed.

Let's see what these look like (Listings 3-1 and 3-2).

Listing 3-1.  Method 1: Standard Deviation 

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

meangrade = df['grade'].mean()
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stdgrade = df['grade'].std()

toprange = meangrade + stdgrade * 1.96

botrange = meangrade - stdgrade * 1.96

copydf = df

copydf = copydf.drop(copydf[copydf['grade']

        > toprange].index)

copydf = copydf.drop(copydf[copydf['grade']

        < botrange].index)

copydf

•	 Line 6: Here we calculate the upper range equal to 1.96 

times the standard deviation plus the mean.

•	 Line 7: Here we calculate the lower range equal to 

1.96 times the standard deviation subtracted from the 

mean.

•	 Line 9: Here we drop the rows where the grade is higher 

than the toprange.

•	 Line 11: Here we drop the rows where the grade is 

lower than the botrange.

Listing 3-2.  Method 2: Interquartile Range 

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

q1 = df['grade'].quantile(.25)

q3 = df['grade'].quantile(.75)

iqr = q3-q1

toprange = q3 + iqr * 1.5

botrange = q1 - iqr * 1.5

copydf = df
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copydf = copydf.drop(copydf[copydf['grade']

        > toprange].index)

copydf = copydf.drop(copydf[copydf['grade']

        < botrange].index)

copydf

•	 Line 9: Here we calculate the upper boundary = the 

third quartile + 1.5 * the IQR.

•	 Line 10: Here we calculate the lower boundary = the 

first quartile - 1.5 * the IQR.

•	 Line 13: Here we drop the rows where the grade is 

higher than the toprange.

•	 Line 14: Here we drop the rows where the grade is 

lower than the botrange.

�Your Turn

Load the dataset datasets/outlierdata.csv. Can you remove the 

outliers? Try it with both methods.

�Missing Data in Pandas Dataframes
One of the most annoying things about working with large datasets is 

finding the missing datum. It can make it impossible or unpredictable to 

compute most aggregate statistics or to generate pivot tables. If you look 

for missing data points in a 50-row dataset it is fairly easy. However, if you 

try to find a missing data point in a 500,000-row dataset it can be much 

tougher.

Python's pandas library has functions to help you find, delete, or 

change missing data (Listing 3-3).
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Listing 3-3.  Creating Dataframe with Missing Data

import pandas as pd

df = pd.read_csv("datasets/gradedatamissing.csv")

df.head()

The preceding code loads a legitimate dataset that includes rows with 

missing data. We can use the resulting dataframe to practice dealing with 

missing data.

To drop all the rows with missing (NaN) data, use the code shown in 

Listing 3-4.

Listing 3-4.  Drop Rows with Missing Data

df_no_missing = df.dropna()

df_no_missing

To add a column filled with empty values, use the code in Listing 3-5.

Listing 3-5.  Add a Column with Empty Values

import numpy as np

df['newcol'] = np.nan

df.head()

To drop any columns that contain nothing but empty values,  

see Listing 3-6.

Listing 3-6.  Drop Completely Empty Columns

df.dropna(axis=1, how='all')

To replace all empty values with zero, see Listing 3-7.

Listing 3-7.  Replace Empty Cells with 0

df.fillna(0)
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To fill in missing grades with the mean value of grade, see Listing 3-8.

Listing 3-8.  Replace Empty Cells with Average of Column

df["grade"].fillna(df["grade"].mean(), inplace=True)

Note, inplace=True means that the changes are saved to the dataframe 

right away.

To fill in missing grades with each gender's mean value of grade, see 

Listing 3-9.

Listing 3-9.  It's Complicated

df["grade"].fillna(df.groupby("gender")

     ["grade"].transform("mean"), inplace=True)

We can also select some rows but ignore the ones with missing data 

points. To select the rows of df where age is not NaN and gender is not 

NaN, see Listing 3-10.

Listing 3-10.  Selecting Rows with No Missing Age or Gender

df[df['age'].notnull() & df['gender'].notnull()]

�Your Turn

Load the dataset datasets/missinggrade.csv. Your mission, if you 

choose to accept it, is to delete rows with missing grades and to replace the 

missing values in hours of exercise by the mean value for that gender.

�Filtering Inappropriate Values
Sometimes, if you are working with data you didn't collect yourself, you 

need to worry about whether the data is accurate. Heck, sometimes 

you need to worry about that even if you did collect it yourself! It can be 
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difficult to check the veracity of each and every data point, but it is quite 

easy to check if the data is appropriate.

Python's pandas library has the ability to filter out the bad values  

(see Listing 3-11).

Listing 3-11.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,-2,77,78,101]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

    columns=['Names', 'Grades'])

df

To eliminate all the rows where the grades are too high, see Listing 3-12.

Listing 3-12.  Filtering Out Impossible Grades

df.loc[df['Grades'] <= 100]

To change the out-of-bound values to the maximum or minimum 

allowed value, we can use the code seen in Listing 3-13.

Listing 3-13.  Changing Impossible Grades

df.loc[(df['Grades'] >= 100,'Grades')] = 100

�Your Turn

Using the dataset from this section, can you replace all the subzero grades 

with a grade of zero?
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�Finding Duplicate Rows
Another thing you need to worry about if you are using someone else’s 

data is whether any data is duplicated. (Did the same data get reported 

twice, or recorded twice, or just copied and pasted?) Heck, sometimes 

you need to worry about that even if you did collect it yourself! It can be 

difficult to check the veracity of each and every data point, but it is quite 

easy to check if the data is duplicated.

Python's pandas library has a function for finding not only duplicated 

rows, but also the unique rows (Listing 3-14).

Listing 3-14.  Creating Dataset with Duplicates

import pandas as pd

names = ['Jan','John','Bob','Jan','Mary','Jon','Mel','Mel']

grades = [95,78,76,95,77,78,99,100]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

        columns=['Names', 'Grades'])

df

To indicate the duplicate rows, we can simply run the code seen in 

Listing 3-15.

Listing 3-15.  Displaying Only Duplicates in the Dataframe

df.duplicated()

To show the dataset without duplicates, we can run the code seen in 

Listing 3-16.

Listing 3-16.  Displaying Dataset without Duplicates

df.drop_duplicates()
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You might be asking, “What if the entire row isn't duplicated, but I 

still know it's a duplicate?" This can happen if someone does your survey 

or retakes an exam again, so the name is the same, but the observation 

is different. In this case, where we know that a duplicate name means a 

duplicate entry, we can use the code seen in Listing 3-17.

Listing 3-17.  Drop Rows with Duplicate Names, Keeping the Last 

Observation

df.drop_duplicates(['Names'], keep='last')

�Your Turn

Load the dataset datasets/dupedata.csv. We figure people with the same 

address are duplicates. Can you drop the duplicated rows while keeping 

the first?

�Removing Punctuation from Column Contents
Whether in a phone number or an address, you will often find unwanted 

punctuation in your data. Let's load some data to see how to address that 

(Listing 3-18).

Listing 3-18.  Loading Dataframe with Data from CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

## To add headers as we load the data...

df = pd.read_csv(Location)

df.head()

To remove the unwanted punctuation, we create a function that 

returns all characters that aren't punctuation, and them we apply that 

function to our dataframe (Listing 3-19).
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Listing 3-19.  Stripping Punctuation from the Address Column

import string

exclude = set(string.punctuation)

def remove_punctuation(x):

    try:

        x = ''.join(ch for ch in x if ch not in exclude)

    except:

        pass

    return x

df.address = df.address.apply(remove_punctuation)

df

�Removing Whitespace from Column Contents

Listing 3-20.  Loading Dataframe with Data from CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

## To add headers as we load the data...

df = pd.read_csv(Location)

df.head()

To remove the whitespace, we create a function that returns all 

characters that aren't punctuation, and them we apply that function to our 

dataframe (Listing 3-21).

Listing 3-21.  Stripping Whitespace from the Address Column

def remove_whitespace(x):

    try:

        x = ''.join(x.split())

    except:
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        pass

    return x

df.address = df.address.apply(remove_whitespace)

df

�Standardizing Dates
One of the problems with consolidating data from different sources is that 

different people and different systems can record dates differently. Maybe 

they use 01/03/1980 or they use 01/03/80 or even they use 1980/01/03. 

Even though they all refer to January 3, 1980, analysis tools may not 

recognize them all as dates if you are switching back and forth between the 

different formats in the same column (Listing 3-22).

Listing 3-22.  Creating Dataframe with Different Date Formats

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

bdates = ['1/1/1945','10/21/76','3/3/90',

        '04/30/1901','1963-09-01']

GradeList = zip(names,grades,bsdegrees,msdegrees,

        phddegrees,bdates)

columns=['Names','Grades','BS','MS','PhD',"bdates"]

df = pd.DataFrame(data = GradeList, columns=columns)

df

Listing 3-23 shows a function that standardizes dates to single format.
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Listing 3-23.  Function to Standardize Dates

from time import strftime

from datetime import datetime

def standardize_date(thedate):

    formatted_date = ""

    thedate = str(thedate)

    if not thedate or thedate.lower() == "missing"

                or thedate == "nan":

        formatted_date = "MISSING"

    if the_date.lower().find('x') != -1:

        formatted_date = "Incomplete"

    if the_date[0:2] == "00":

        formatted_date = thedate.replace("00", "19")

    try:

        formatted_date = str(datetime.strptime(    

        thedate,'%m/%d/%y')

.strftime('%m/%d/%y'))

    except:

        pass

    try:

        formatted_date = str(datetime.strptime(

thedate, '%m/%d/%Y')

.strftime('%m/%d/%y'))

    except:

        pass

    try:

        if int(the_date[0:4]) < 1900:

            formatted_date = "Incomplete"

        else:

            formatted_date = str(datetime.strptime(

            thedate, '%Y-%m-%d')
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.strftime('%m/%d/%y'))

    except:

        pass

    return formatted_date

Now that we have this function, we can apply it to the birthdates 

column on our dataframe (Listing 3-24).

Listing 3-24.  Applying Date Standardization to Birthdate Column

df.bdates = df.bdates.apply(standardize_date)

df

�Standardizing Text like SSNs, Phone Numbers, 
and Zip Codes
One of the problems with consolidating data from different sources is that 

different people and different systems can record certain data like Social 

Security numbers, phone numbers, and zip codes differently. Maybe they use 

hyphens in those numbers, and maybe they don't. This section quickly covers 

how to standardize how these types of data are stored (see Listing 3-25).

Listing 3-25.  Creating Dataframe with SSNs

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

ssns = ['867-53-0909','333-22-4444','123-12-1234',

        '777-93-9311','123-12-1423']
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GradeList = zip(names,grades,bsdegrees,msdegrees,

        phddegrees,ssns)

columns=['Names','Grades','BS','MS','PhD',"ssn"]

df = pd.DataFrame(data = GradeList, columns=columns)

df

The code in Listing 3-26 creates a function that standardizes the SSNs 

and applies it to our ssn column.

Listing 3-26.  Remove Hyphens from SSNs and Add Leading Zeros if 

Necessary

def right(s, amount):

    return s[-amount]

def standardize_ssn(ssn):

    try:

        ssn = ssn.replace("-","")

        ssn = "".join(ssn.split())

        if len(ssn)<9 and ssn != 'Missing':

            ssn="000000000" + ssn

            ssn=right(ssn,9)

    except:

        pass

    return ssn

df.ssn = df.ssn.apply(standardize_ssn)

df

�Creating New Variables
Once the data is free of errors, you need to set up the variables that will 

directly answer your questions. It's a rare dataset in which every question 

you need answered is directly addressed by a variable. So, you may need to 
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do a lot of recoding and computing of variables to get exactly the dataset 

that you need.

Examples include the following:

•	 Creating bins (like converting numeric grades to letter 

grades or ranges of dates into Q1, Q2, etc.)

•	 Creating a column that ranks the values in another 

column

•	 Creating a column to indicate that another value has 

reached a threshold (passing or failing, Dean's list, etc.)

•	 Converting string categories to numbers (for regression 

or correlation)

�Binning Data
Sometimes, you will have discrete data that you need to group into bins. 

(Think: converting numeric grades to letter grades.) In this lesson, we will 

learn about binning (Listing 3-27).

Listing 3-27.  Loading the Dataset from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now that the data is loaded, we need to define the bins and group 

names (Listing 3-28).
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Listing 3-28.  Define Bins as 0 to 60, 60 to 70, 70 to 80, 80 to 90,  

90 to 100

# Create the bin dividers

bins = [0, 60, 70, 80, 90, 100]

# Create names for the four groups

group_names = ['F', 'D', 'C', 'B', 'A']

Notice that there is one more bin value than there are group_names. 

This is because there needs to be a top and bottom limit for each bin.

Listing 3-29.  Cut Grades

df['lettergrade'] = pd.cut(df['grade'], bins,

        labels=group_names)

df

Listing 3-29 categorizes the column grade based on the bins list and 

labels the values using the group_names list.

And if we want to count the number of observations for each category, 

we can do that too (Listing 3-30).

Listing 3-30.  Count Number of Observations

pd.value_counts(df['lettergrade'])

�Your Turn

Recreate the dataframe from this section and create a column classifying 

the row as pass or fail. This is for a master's program that requires a grade 

of 80 or above for a student to pass.
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�Applying Functions to Groups, Bins, 
and Columns
The number one reason I use Python to analyze data is to handle datasets 

larger than a million rows. The number two reason is the ease of applying 

functions to my data.

To see this, first we need to load up some data (Listing 3-31).

Listing 3-31.  Loading a Dataframe from a CSV File

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Then, we use binning to divide the data into letter grades (Listing 3-32).

Listing 3-32.  Using Bins

# Create the bin dividers

bins = [0, 60, 70, 80, 90, 100]

# Create names for the four groups

group_names = ['F', 'D', 'C', 'B', 'A']

df['letterGrades'] = pd.cut(df['grade'],

        bins, labels=group_names)

df.head()

To find the average hours of study by letter grade, we apply our 

functions to the binned column (Listing 3-33).

Listing 3-33.  Applying Function to Newly Created Bin

df.groupby('letterGrades')['hours'].mean()
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Applying a function to a column looks like Listing 3-34.

Listing 3-34.  Applying a Function to a Column

# Applying the integer function to the grade column

df['grade'] = df['grade'] = df['grade']

.apply(lambda x: int(x))

df.head()

•	 Line 1: Let's get an integer value for each grade in the 

dataframe.

Applying a function to a group can be seen in Listing 3-35.

Listing 3-35.  Applying a Function to a Group

gender_preScore = df['grade'].groupby(df['gender'])

gender_preScore.mean()

•	 Line 1: Create a grouping object. In other words, create 

an object that represents that particular grouping. In 

this case, we group grades by the gender.

•	 Line 2: Display the mean value of each regiment's  

pre-test score.

�Your Turn

Import the datasets/gradedata.csv file and create a new binned column 

of the 'status' as either passing (> 70) or failing (<=70). Then, compute 

the mean hours of exercise of the female students with a 'status' of 

passing.
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�Ranking Rows of Data
It is relatively easy to find the row with the maximum value or the 

minimum value, but sometimes you want to find the rows with the 50 

highest or the 100 lowest values for a particular column. This is when you 

need ranking (Listing 3-36).

Listing 3-36.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

If we want to find the rows with the lowest grades, we will need to rank 

all rows in ascending order by grade. Listing 3-37 shows the code to create 

a new column that is the rank of the value of grade in ascending order.

Listing 3-37.  Create Column with Ranking by Grade

df['graderanked'] = df['grade'].rank(ascending=1)

df.tail()

So, if we just wanted to see the students with the 20 lowest grades, we 

would use the code in Listing 3-38.

Listing 3-38.  Bottom 20 Students

df[df['graderanked'] < 21]

And, to see them in order, we need to use the code in Listing 3-39.

Listing 3-39.  Bottom 6 Students in Order

df[df['graderanked'] < 6].sort_values('graderanked')
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�Your Turn

Can you find the 50 students with the most hours of study per week?

�Create a Column Based on a Conditional
Sometimes, you need to classify a row of data by the values in one or more 

columns, such as identifying those students who are passing or failing by 

whether their grade is above or below 70. In this section, we will learn how 

to do this (Listing 3-40).

Listing 3-40.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now, let us say we want a column indicating whether students are 

failing or not (Listing 3-41).

Listing 3-41.  Create Yes/No isFailing Column

import numpy as np

df['isFailing'] = np.where(df['grade']<70,

'yes', 'no')

df.tail(10)

Line 1: We import the numpy library

Line 2: Create a new column called df.failing 

where the value is yes if df.grade is less than 70 and 

no if not.
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If instead we needed a column indicating who the male students were 

with failing scores, we could use the code in Listing 3-42.

Listing 3-42.  Create Yes/No isFailingMale Column

df['isFailingMale'] = np.where((df['grade']<70)

        & (df['gender'] == 'male'),'yes', 'no')

df.tail(10)

�Your Turn

Can you create a column for timemgmt that shows busy if a student 

exercises more than three hours per week AND studies more than 

seventeen hours per week?

�Making New Columns Using Functions
Much of what I used to use Excel to do (and what I now use Python for) is 

to create new columns based on an existing one. So, using the following 

data (Listing 3-43), let's see how we would do this.

Listing 3-43.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

To create a single column to contain the full name of each student,  

we first create a function to create a single string from two strings  

(Listing 3-44).
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Listing 3-44.  Create Function to Generate Full Name

def singlename(fn, ln):

    return fn + " " + ln

Now, if you test that function, you will see that it works perfectly well 

concatenating Adam and Smith into Adam Smith. However, we can also 

use it with column selectors to create a new column using our fname and 

lname columns (Listing 3-45).

Listing 3-45.  Create Column to Hold the Full Name

df['fullname'] = singlename(df['fname'],df['lname'])

This code creates a column called fullname that concatenates the first 

and last name.

�Your Turn

Can you create a column called total time that adds together the hours of 

study per week and the hours of exercise per week?

�Converting String Categories to Numeric 
Variables
Why do I need to convert string categories to numeric variables? Many 

analytical tools won't work on text, but if you convert those values to 

numbers it makes things much simpler (Listing 3-46).

Listing 3-46.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()
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Method 1: Convert single column to hold numeric variables  

(Listing 3-47).

Listing 3-47.  Function to Convert Gender to Number

def score_to_numeric(x):

    if x=='female':

        return 1

    if x=='male':

        return 0

Now, run that method on your column (Listing 3-48).

Listing 3-48.  Apply score_to_numeric Function to Gender

df['gender_val'] = df['gender'].apply(score_to_numeric)

df.tail()

Method 2: Create individual Boolean columns (Listing 3-49).

Listing 3-49.  Create Boolean Columns Based on Gender Column

df_gender = pd.get_dummies(df['gender'])

df_gender.tail()

Join columns to original dataset (Listing 3-50).

Listing 3-50.  Add New Columns to Original Dataframe

# Join the dummy variables to the main dataframe

df_new = pd.concat([df, df_gender], axis=1)

df_new.tail()

# or

# Alterative for joining the new columns

df_new = df.join(df_gender)

df_new.tail()

Chapter 3  Preparing Data Is Half the Battle



42

�Your Turn

Using datasets/gradesdatawithyear.csv, can you create a numeric 

column to replace statuses of freshman through senior with the numerals 1 

through 4?

�Organizing the Data
Both original and newly created variables need to be formatted correctly 

for two reasons.

First, so our analysis tools work with them correctly. Failing to format 

a missing value code or a dummy variable correctly will have major 

consequences for your data analysis.

Second, it's much faster to run the analysis and interpret results if you 

don't have to keep looking up which variable Q156 is.

Examples include the following:

•	 Removing columns that aren't needed

•	 Changing column names

•	 Changing column names to lower case

•	 Formatting date variables as dates, and so forth.

�Removing and Adding Columns
Sometimes we need to adjust the data. Either something is left out that 

should have been included or something was left in that should have been 

removed. So, let's start with the dataset in Listing 3-51.

Listing 3-51.  Creating Starting Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']
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grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]

GradeList = zip(names,grades,bsdegrees,msdegrees,

        phddegrees)

columns=['Names','Grades','BS','MS','PhD']

df = pd.DataFrame(data = GradeList, columns=columns)

df

We can drop a column by simply adding the code in Listing 3-52.

Listing 3-52.  Dropping a Column

df.drop('PhD', axis=1)

With axis=1 telling drop that we want to drop a column (1) and not a 

row (0).

We can add a column filled with zeros by setting the new column name 

to be equal to a 0 (Listing 3-53).

Listing 3-53.  Creating a New Column Filled with Zeros

df['HighSchool']=0

If, however, you want to set the new columns to equal null values, you 

can do that too (Listing 3-54).

Listing 3-54.  Creating a New Column Filled with Null Values

df['PreSchool'] = np.nan

Now, adding a column with values is not that hard. We create a series 

and set the column equal to the series (Listing 3-55).
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Listing 3-55.  Creating a New Column Filled with Values

d = ([0,1,0,1,0])

s = pd.Series(d, index= df.index)

df['DriversLicense'] = s

df

�Your Turn

Can you remove the bs, ms, and phd degree columns?

Can you add a Hogwarts Magic Degree column? Everyone but Jessica 

has one; does that make it harder? No? Then I have to be sure to stump you 

next time.

�Selecting Columns
You will need to make subselections of your data occasionally, especially if 

your dataset has tons of columns. Here, we learn how to create a dataframe 

that includes only some of our columns (Listing 3-56).

Listing 3-56.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Now, to select a column of data, we specify the column name  

(Listing 3-57).

Listing 3-57.  Selecting a Column into a List

df['fname']
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But if you run that code you only get the data in the column (notice 

the header is missing). That is because this doesn't return a dataframe; it 

returns a list. To return a dataframe when selecting a column, we need to 

specify it (Listing 3-58).

Listing 3-58.  Selecting a Column into a Dataframe

df[['fname']]

To return multiple columns, we use code like that in Listing 3-59.

Listing 3-59.  Selecting Multiple Columns into a Dataframe

df[['fname','age','grade']]

And, of course, if we want to create a dataframe with that subset of 

columns, we can copy it to another variable (Listing 3-60).

Listing 3-60.  Creating New Dataframe from Your Selection

df2 = df[['fname','age','grade']]

df2.head()

�Your Turn

We need to create a mailing list. Can you create a new dataframe by 

selecting the first name, last name, and address fields?

�Change Column Name
Sometimes you need change the names of your columns. With pandas, it's 

easy to do. First, you load your data (Listing 3-61).
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Listing 3-61.  Load Dataset from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

But, when we look at the header, we aren't crazy about the column 

names—or it doesn't have any.

It is simple to change the column headers (Listing 3-62).

Listing 3-62.  Change All Headers

df.columns = ['FirstName', 'LastName', 'Gender',

        'Age', 'HoursExercisePerWeek',

        'HoursStudyPerWeek', 'LetterGrade',

        'StreetAddress']

df.head()

Or, if you just wanted to change one or two values, you can load the list 

of headers (Listing 3-63).

Listing 3-63.  Load List of Headers into a Temp Variable

headers = list(df.columns.values)

Once the headers are loaded, you can change a few (Listing 3-64).

Listing 3-64.  Changing Headers

headers[0] = 'FName'

headers[1] = 'LName'

df.columns = headers

df.head()
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�Your Turn

Can you change the age column name to years?

�Setting Column Names to Lower Case
It may not be the biggest problem in the world, but sometimes I need to 

convert all the column names to lowercase (or uppercase, for that matter). 

This lesson will cover how to do that (Listing 3-65).

Listing 3-65.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Once you have the data, there are two quick ways to cast all the column 

headers to lowercase (Listing 3-66).

Listing 3-66.  Casting All Headers to Lowercase

# method 1

df.columns = map(str.lower, df.columns)

# method 2

df.columns = [x.lower() for x in df.columns]

�Your Turn

Can you figure out how to make all the column headers all uppercase?
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�Finding Matching Rows
Of course, you don't always want to compute using the entire dataset. 

Sometimes you want to work with just a subset of your data. In this lesson, 

we find out how to do that (Listing 3-67).

Listing 3-67.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

        columns=['Names', 'Grades'])

df

To find all the rows that contain the word Mel, use the code shown in 

Listing 3-68 in a new cell.

Listing 3-68.  Filtering Rows

df['Names'].str.contains('Mel')

After executing that line of Python, you will see a list of Boolean 

values—True for the lines that match our query and False for that ones that 

don't.

We can make our answer shorter by adding .any. This will just display a 

single True if any line matches and False if none of them do (Listing 3-69).

Listing 3-69.  Check if Any Rows Match

# check if any row matches

df['Names'].str.contains('Mel').any()
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Alternatively, you can add .all. This will just display a single True if all 

of the lines match and False if at least one of them does not (Listing 3-70).

Listing 3-70.  Check if All Rows Match

# check if all rows match

df['Names'].str.contains('Mel').all()

We can also use this along with the .loc (locate) function to show just 

the rows that match certain criteria (Listing 3-71).

Listing 3-71.  Show the Rows that Match

# Find the rows that match a criteria like this

df.loc[df['Names'].str.contains('Mel')==True]

# or even like this...

df.loc[df['Grades']==0]

�Your Turn

Can you find all the people who have at least one MS degree in the 

following data (Listing 3-72)?

Listing 3-72.  Starting Dataset

import pandas as pd

names = ['Bob','Jessi','Mary','John','Mel','Sam',

        'Cathy','Hank','Lloyd']

grades = [76,95,77,78,99,84,79,100,73]

bsdegrees = [1,1,0,0,1,1,1,0,1]

msdegrees = [2,1,0,0,0,1,1,0,0]

phddegrees = [0,1,0,0,0,2,1,0,0]

GradeList = zip(names,grades,bsdegrees,msdegrees,

        phddegrees)
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df = pd.DataFrame(data = GradeList, columns=['Name','Grade','BS', 

'MS','PhD'])

df

�Filter Rows Based on Conditions

Listing 3-73.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

We can show one column of data (Listing 3-74).

Listing 3-74.  One Column

df['grade'].head()

Or we can show two columns of data (Listing 3-75).

Listing 3-75.  Two Columns

df[['age','grade']].head()

Or we can show the first two rows of data (Listing 3-76).

Listing 3-76.  First Two Rows

df[:2]

To show all the rows where the grade is greater than 80, use the code in 

Listing 3-77.

Listing 3-77.  All Rows with Grade > 80

df[df['grade'] > 80]
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Using multiple conditions is a little trickier. So, if we wanted to get a list 

of all the students who scored higher than 99.9 and were male, we would 

need to use the code shown in Listing 3-78.

Listing 3-78.  All Rows Where Men Scored > 99.9

df.ix[(df['grade'] > 99.9) &

    (df['gender'] == 'male') ]

If instead we wanted all the students who scored higher than 99 OR 

were female, we would need to use the code in Listing 3-79.

Listing 3-79.  All Rows Where Women or Scored > 99

df.ix[(df['grade'] > 99) | (df['gender'] == 'female') ]

�Your Turn

Can you show all the rows where the student was male, exercised less than 

two hours per week, and studied more than fifteen hours per week?

�Selecting Rows Based on Conditions

Listing 3-80.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Listing 3-81.  Method 1: Using Variables to Hold Attributes

female = df['gender'] == "female"

a_student = df['grade'] >= 90

df[female & a_student].head()
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Line 1: We create a variable with TRUE if gender is 

female.

Line 2: We create a variable with TRUE if grade is 

greater than or equal to 90.

Line 3: This is where we select all cases where both 

gender is female and grade is greater than or equal 

to 90.

Listing 3-82.  Method 2: Using Variable Attributes Directly

df[df['fname'].notnull() & (df['gender'] == "male")]

In Listing 3-82, we select all cases where the first name is not missing 

and gender is male.

�Your Turn

Can you find all the rows where the student had four or more hours of 

exercise per week, seventeen or more hours of study, and still had a grade 

that was lower than 80?

�Random Sampling Dataframe
This one is simple. Obviously, sometimes we have datasets that are too 

large and we need to take a subset, so let's start with some loaded data 

(Listing 3-83).

Listing 3-83.  Load Dataset from CSV

import pandas as pd

import numpy as np

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.tail()
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To select just 100 rows randomly from that dataset, we can simply run 

the code shown in Listing 3-84.

Listing 3-84.  Random Sample of 100 Rows from Dataframe

df.take(np.random.permutation(len(df))[:100])

�Your Turn

Can you create a random sample of 500 rows from that dataset?
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CHAPTER 4

Finding the Meaning
The third stage of data analysis is actually analyzing the data. Finding 

meaning within your data can be difficult without the right tools. In this 

section, we look at some of the tools available to the Python user.

With just a few lines of code, you will be able to do the following 

analysis:

•	 Compute descriptive statistics

•	 Correlation

•	 Linear regression

•	 Pivot tables

�Computing Aggregate Statistics
As you may have seen in the last chapter, it is easy to get some summary 

statistics by using describe. Let’s take a look at how we can find those 

values directly.

First, let’s create some data (Listing 4-1).

Listing 4-1.  Creating Dataset for Statistics

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]
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GradeList = zip(names,grades)

df = pd.DataFrame(data=GradeList,

        columns=['Names','Grades'])

df

Once that is set up, we can take a look at some statistics (Listing 4-2).

Listing 4-2.  Computing Aggregate Statistics

df['Grades'].count()  # number of values

df['Grades'].mean()   # arithmetic average

df['Grades'].std()    # standard deviation

df['Grades'].min()    # minimum

df['Grades'].max()    # maximum

df['Grades'].quantile(.25)  # first quartile  

df['Grades'].quantile(.5)   # second quartile  

df['Grades'].quantile(.75)  # third quartile

Note  If you tried to execute the previous code in one cell all at 
the same time, the only thing you would see is the output of the 
.quantile() function. You have to try them one by one. I simply 
grouped them all together for reference purposes. OK?

It is important to note that the mean is not the only measure of central 

tendency. See Listing 4-3 for other measures.

Listing 4-3.  Other Measures of Central Tendency

# computes the arithmetic average of a column

# mean = dividing the sum by the number of values

df['Grades'].mean()

# finds the median of the values in a column
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# median = the middle value if they are sorted in order

df['Grades'].median()

# finds the mode of the values in a column

# mode = the most common single value

df['Grades'].mode()

And if you need to compute standard deviation, you might also need 

variance (Listing 4-4).

Listing 4-4.  Computing Variance

# computes the variance of the values in a column

df['Grades'].var()

Finally, you don’t have to specify the column to compute the statistics. 

If you just run it against the whole dataframe, you will get the function to 

run on all applicable columns (Listing 4-5).

Listing 4-5.  Computing Variance on All Numeric Columns

df.var()

�Your Turn
Of course, in our dataset we only have one column. Try creating a 

dataframe and computing summary statistics using the dataset in  

Listing 4-6.

Listing 4-6.  Starting Dataset

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bsdegrees = [1,1,0,0,1]

msdegrees = [2,1,0,0,0]

phddegrees = [0,1,0,0,0]
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�Computing Aggregate Statistics 
on Matching Rows
It is possible to compute descriptive statistics on just the rows that match 

certain criteria. First, let’s create some data (Listing 4-7).

Listing 4-7.  Creating Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,95,77,78,99]

bs = [1,1,0,0,1]

ms = [2,1,0,0,0]

phd = [0,1,0,0,0]

GradeList = zip(names,grades,bs,ms,phd)

df = pd.DataFrame(data=GradeList,

        columns=['Name','Grade','BS','MS','PhD'])

df

Ok, we have covered how to find the rows that match a set of criteria. 

We have also covered how to compute descriptive statistics, both all at 

once and one by one. If you put those two together, you will be able to find 

the statistics of the data that matches certain criteria.

So, to count the rows of the people without a PhD, use the code shown 

in Listing 4-8.

Listing 4-8.  Code for Computing Aggregate Statistics

df.loc[df['PhD']==0].count()

You can use any of the aggregate statistics functions on individual 

columns in the same way. So, to find the average grade of those people 

without a PhD, use the code in Listing 4-9.
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Listing 4-9.  Computing Aggregate Statistics on a Particular Column

df.loc[df['PhD']==0]['Grade'].mean()

�Your Turn
Using the data from Listing 4-10, what is the average grade for people with 

master’s degrees?

Listing 4-10.  Dataset for Exercise

import pandas as pd

names = ['Bob','Jessica','Mary','John',

        'Mel','Sam','Cathy','Henry','Lloyd']

grades = [76,95,77,78,99,84,79,100,73]

bs = [1,1,0,0,1,1,1,0,1]

ms = [2,1,0,0,0,1,1,0,0]

phd = [0,1,0,0,0,2,1,0,0]

GradeList = zip(names,grades,bs,ms,phd)

df = pd.DataFrame(data=GradeList,

        columns=['Names','Grades','BS','MS','PhD'])

df

�Sorting Data
Generally, we get data in a random order, but need to use it in a completely 

different order. We can use the sort_values function to rearrange our data 

to our needs (Listing 4-11).
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Listing 4-11.  Loading Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Sort the dataframe’s rows by age, in descending order (Listing 4-12).

Listing 4-12.  Sorting by Age, Descending

df = df.sort_values(by='age', ascending=0)

df.head()

Sort the dataframe’s rows by hours of study and then by exercise, in 

ascending order (Listing 4-13).

Listing 4-13.  Sorting by Hours of Study and Exercise, Ascending

df = df.sort_values(by=['grade', 'age'],

        ascending=[True, True])

df.head()

�Your Turn
Can you sort the dataframe to order it by name, age, and then grade?

�Correlation
Correlation is any of a broad class of statistical relationships involving 

dependence, though in common usage it most often refers to the extent 

to which two variables have a linear relationship with each other. Familiar 

examples of dependent phenomena include the correlation between 

the physical statures of parents and their offspring, and the correlation 

between the demand for a product and its price.
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Basically, correlation measures how closely two variables move in the 

same direction. Tall parents have tall kids? Highly correlated. Wear lucky 

hat, but rarely win at cards? Very slightly correlated. As your standard of 

living goes up, your level of savings plummet? Highly negatively correlated.

Simple, right?

Well, computing correlation can be a little difficult by hand, but is 

totally simple in Python (Listing 4-14).

Listing 4-14.  Running a Correlation

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

df.corr()

Age Exercise Hours Grade

Age 1.000000 -0.003643 -0.017467 -0.007580

Exercise -0.003643 1.000000 0.021105 0.161286

Hours -0.017467 0.021105 1.000000 0.801955

Grade -0.007580 0.161286 0.801955 1.000000

The intersections with the highest absolute values are the columns that 

are the most correlated. Positive values are positively correlated, which 

means they go up together. Negative values are negatively correlated (as 

one goes up the other goes down). And, of course, each column is perfectly 

correlated with itself. As you can see, hours of study and grade are highly 

correlated.
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�Your Turn
Load the data from the code in Listing 4-15 and find the correlations.

Listing 4-15.  Load Data from CSV

import pandas as pd

Location = "datasets/tamiami.csv"

�Regression
In statistical modeling, regression analysis is a statistical process for 

estimating the relationships among variables. This is a fancy way of saying 

that we use regression to create an equation that explains the value of a 

dependent variable based on one or several independent variables. Let’s 

get our data (Listing 4-16),

Listing 4-16.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

Once we have that, we need to decide what columns we want to perform 

the regression on and which is the dependent variable. I want to try to predict 

the grade based on the age, hours of exercise, and hours of study (Listing 4-17).

Listing 4-17.  First Regression

import statsmodels.formula.api as sm

result = sm.ols(

        formula='grade ~ age + exercise + hours',

        data=df).fit()

result.summary()
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The formula format in line two is one that you need to learn and get 

comfortable editing. It shows the dependent variable on the left of the tilde 

(~) and the independent variables we want considered on the right.

If you look at the results you get from the summary, the R-squared 

represents the percentage of the variation in the data that can be 

accounted for by the regression. .664, or 66.4 percent, is good, but not 

great. The p-value (represented here by the value of P>|t|) represents the 

probability that the independent variable has no effect on the dependent 

variable. I like to keep my p-values less than 5 percent, so the only variable 

that stands out is the age with 59.5 percent. Let’s rerun the regression, but 

leaving out the age (Listing 4-18).

Listing 4-18.  Second Regression

import statsmodels.formula.api as sm

result = sm.ols(

        formula='grade ~ exercise + hours',

        data=df).fit()

result.summary()

Looking at our new results, we haven’t changed our R-squared, but 

we have eliminated all our high p-values. So, we can now look at our 

coefficients, and we will end up with an equation that looks something 

like grade = 1.916 * hours of study +.989 * hours of exercise + 

58.5316.

�Your Turn
Create a new column where you convert gender to numeric values, like 

1 for female and 0 for male. Can you now add gender to your regression? 

Does this improve your R-squared?
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�Regression without Intercept
Sometimes, your equation works better without an intercept. This can 

happen even though your p-values indicate otherwise. I always try it both 

ways, just as a matter of course, to see what the R-Squared is. To run your 

regression without an intercept, simply follow Listing 4-19.

Listing 4-19.  Run Regression without Intercept

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

result = sm.ols(

        formula='grade ~ age + exercise + hours - 1', data=df).

fit()

result.summary()

Note that it is the - 1 at the end of the formula that tells Python that 

you wish to eliminate the intercept. If you look at the results, you can see 

we now have a much higher R-squared than we had in the last lesson, and 

we also have no p-values that cause us concern.

�Your Turn
Try running these simple regressions with no intercept: 1. Tests for the 

relationship between just grade and age; 2. Tests for the relationship 

between just grade and exercise; and 3. Tests for the relationship between 

just grade and study.

If you had to pick just one, which one do you like best?
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�Basic Pivot Table
Pivot tables (or crosstabs) have revolutionized how Excel is used to do 

analysis. However, I like pivot tables in Python better than I do in Excel. 

Let’s get some data (Listing 4-20).

Listing 4-20.  Load Data from CSV

import pandas as pd

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

At its simplest, to get a pivot table we need a dataframe and an index 

(Listing 4-21).

Listing 4-21.  Get Averages of All Numeric Columns Categorized by 

Gender

pd.pivot_table(df, index=['gender'])

As you can see, pivot_table is smart enough to assume that we want 

the averages of all the numeric columns. If we wanted to specify just one 

value, we could do that (Listing 4-22).

Listing 4-22.  Average Grade by Gender

pd.pivot_table(df,

        values=['grade'],

        index=['gender'])

Gender Grade

Female 82.7173

Male 82.3948
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Now we see just the average grades, categorized by gender. If we wanted 

to, however, we could look at minimum hours of study (Listing 4-23).

Listing 4-23.  Minimum Grade by Gender

pd.pivot_table(df,

        values=['grade'],

        index=['gender'],

        aggfunc='min')

Gender Grade

Female 2

Male 0

We can also add other columns to the index. So, to view the maximum 

grade categorized by gender and age, we simply run the code in Listing 4-24.

Listing 4-24.  Max Grade by Gender and Age

pd.pivot_table(df,

        index=['gender','age'],

        aggfunc='max',

        values=['hours'])

Gender Age Hours

Female 14 20

15 20

16 19

17 20

18 20

19 20
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Gender Age Hours

Male 14 19

15 20

16 20

17 20

18 20

19 20

We can also have multiple value columns. So, to show the average 

grade and hours of study by gender, we can run the code in Listing 4-25.

Listing 4-25.  Average Grade and Hours by Gender

pd.pivot_table(df,

        index=['gender'],

        aggfunc='mean',

        values=['grade','hours'])

Gender Grade Hours

Female 82.7173 10.932

Male 82.3948 11.045

We can also perform pivot tables on subsets of the data. First, select 

your data, then do a standard pivot on that selection. So, to show the 

average grade and hours of study by gender for students who are 17 years 

old, we can run the code in Listing 4-26.

Listing 4-26.  Average Grade and Hours by Gender

df2 = df.loc[df['age'] == 17]

pd.pivot_table(df2,
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        index=['gender'],

        aggfunc='mean',

        values=['grade','hours'])

Gender Grade Hours

Female 83.599435 10.943503

Male 82.949721 11.268156

Finally, we can include totals on our Python pivot tables, as shown in 

Listing 4-27.

Listing 4-27.  Average Grade and Hours by Gender

df2 = df.loc[df['age'] == 17]

pd.pivot_table(df2,

        index=['gender'],

        aggfunc='mean',

        values=['grade','hours'],

        margins='True')

Gender Grade Hours

Female 83.599435 10.943503

Male 82.949721 11.268156

All 83.272753 11.106742

�Your Turn
Can you create a pivot table showing the average grade by gender of 

people who had more than two hours of exercise?
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CHAPTER 5

Visualizing Data
�Data Quality Report
When you have looked at enough datasets, you will develop a set of 

questions you want answered about the data to ascertain how good the 

dataset is. This following scripts combine to form a data quality report that 

I use to evaluate the datasets that I work with. 

Listing 5-1.  Load Dataset from CSV

# import the data

import pandas as pd

Location = "datasets\gradedata.csv"

df = pd.read_csv(Location)

df.head()

df.mode().transpose()

Listing 5-2.  Finding Data Types of Each Column

data_types = pd.DataFrame(df.dtypes,

        columns=['Data Type'])

data_types

Listing 5-3.  Counting Number of Missing Observations by Column

missing_data_counts = pd.DataFrame(df.isnull().sum(),

        columns=['Missing Values'])

missing_data_counts
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Listing 5-4.  Counting Number of Present Observations by Column

present_data_counts = pd.DataFrame(df.count(),

        columns=['Present Values'])

present_data_counts

Listing 5-5.  Counting Number of Unique Observations by Column

unique_value_counts = pd.DataFrame(

        columns=['Unique Values'])

for v in list(df.columns.values):

        unique_value_counts.loc[v] = [df[v].nunique()]

unique_value_counts

Listing 5-6.  Finding the Minimum Value for Each Column

minimum_values = pd.DataFrame(columns=[

        'Minimum Values'])

for v in list(df.columns.values):

        minimum_values.loc[v] = [df[v].min()]

minimum_values

Listing 5-7.  Finding the Maximum Value for Each Column

maximum_values = pd.DataFrame(

        columns=['Maximum Values'])

for v in list(df.columns.values):

        maximum_values.loc[v] = [df[v].max()]

maximum_values

Listing 5-8.  Joining All the Computed Lists into 1 Report 

pd.concat([present_data_counts,

        missing_data_counts,

        unique_value_counts,
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        minimum_values,

        maximum_values],

        axis=1)

�Your Turn
Can you create a data quality report for the datasets/tamiami.csv 

dataset?

�Graph a Dataset: Line Plot
To create a simple line plot, input the code from Listing 5-9.

Listing 5-9.  Line Plotting Your Dataset

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

grades = [76,83,77,78,95]

GradeList = zip(names,grades)

df = pd.DataFrame(data = GradeList,

        columns=['Names', 'Grades'])

%matplotlib inline

df.plot()

When you run it, you should see a graph that looks like Figure 5-1.

Chapter 5  Visualizing Data



72

Customizing the graph is easy, but you need to add the matplotlib 

library first.

Add the code in Listing 5-10 to what you did already.

Listing 5-10.  Code to Plot a Customized Graph

import matplotlib.pyplot as plt

df.plot()

displayText = "my annotation"

xloc = 1

yloc = df['Grades'].max()

xtext = 8

ytext = 0

plt.annotate(displayText,

            xy=(xloc, yloc),

            xytext=(xtext,ytext),

            xycoords=('axes fraction', 'data'),

            textcoords='offset points')

Figure 5-1.  Simple Line Plot
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Ok, the annotate command has pretty good documentation, located at 

http://matplotlib.org/api/pyplot_api.html. But let's tear apart what 

we typed:

displayText: the text we want to show for this 

annotation

xloc, yloc: the coordinates of the data point we 

want to annotate

xtext, ytext: coordinates of where we want the 

text to appear using the coordinate system specified 

in textcoords

xycoords: sets the coordinate system to use to find 

the data point; it can be set separately for x and y

textcoords: sets the coordinate system to use to 

place the text

Finally, we can add an arrow linking the data point annotated to the 

text annotation (Listing 5-11).

Listing 5-11.  Code to Plot a Customized Graph

df.plot()

displayText = "my annotation"

xloc = 1

yloc = df['Grades'].max()

xtext = 8

ytext = -150     

plt.annotate(displayText,

            xy=(xloc, yloc),

            arrowprops=dict(facecolor='black',

                        shrink=0.05),   
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            xytext=(xtext,ytext),

            xycoords=('axes fraction', 'data'),

            textcoords='offset points')

All we did is adjust the offset of the text so that there was enough room 

between the data and the annotation to actually see the arrow. We did this 

by changing the ytext value from 0 to -150. Then, we added the setting for 

the arrow.

More information about creating arrows can be found on the 

documentation page for annotate at http://matplotlib.org/users/

annotations_intro.html.

�Your Turn
Take the same dataset we used in this example and add an annotation to 

Bob's 76 that says “Wow!”

�Graph a Dataset: Bar Plot
To create a bar plot, input the code in Listing 5-12.

Listing 5-12.  Bar Plotting Your Dataset

import matplotlib.pyplot as plt

import pandas as pd

names = ['Bob','Jessica','Mary','John','Mel']

status = ['Senior','Freshman','Sophomore','Senior',

        'Junior']

grades = [76,95,77,78,99]

GradeList = zip(names,grades)
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df = pd.DataFrame(data = GradeList,

        columns=['Names', 'Grades'])

%matplotlib inline

df.plot(kind='bar')

Once you run it, you will get a simple bar plot, but the titles on the 

x-axis are the numbers 0–4.

But if we convert the Names column into the index, we can improve the 

graph. So, first, we need to add the code in Listing 5-13.

Listing 5-13.  Adding Code to Plot Your Dataset

df2 = df.set_index(df['Names'])

df2.plot(kind="bar")

We will then get a graph that looks like Figure 5-3.

Figure 5-2.  Simple Bar Plot
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�Your Turn
Can you change the code to create a bar plot where the status is the label?

�Graph a Dataset: Box Plot
To create a box plot, input the code in Listing 5-14.

Listing 5-14.  Box Plotting Your Dataset

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

names = ['Bob','Jessica','Mary','John','Mel']

Figure 5-3.  Bar Plot with Axis Titles
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grades = [76,95,77,78,99]

gender = ['Male','Female','Female','Male','Female']

status = ['Senior','Senior','Junior','Junior','Senior']

GradeList = zip(names,grades,gender)

df = pd.DataFrame(data = GradeList, columns=['Names', 'Grades', 

'Gender'])

df.boxplot(column='Grades')

Once you run it, you will get a simple box plot.

Now, we can use a single command to create categorized graphs (in 

this case, categorized by gender). See Listing 5-15.

Listing 5-15.  Adding Code to Categorize Your Box Plot

df.boxplot(by='Gender', column='Grades')

And we will then get a graph that looks like Figure 5-5. See Listing 5-16.

Figure 5-4.  Simple Box Plot
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Listing 5-16.  Categorized Box Plots

And, finally, to adjust the y-axis so that it runs from 0 to 100, we can 

run the code in Listing 5-17.

Listing 5-17.  Adding Code to Adjust the Y-axis

axis1 = df.boxplot(by='Gender', column='Grades')

axis1.set_ylim(0,100)

It will produce a graph like the one in Figure 5-6.

Figure 5-5.  Categorized Box Plot
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�Your Turn
Using the dataset we just created:

•	 Can you create a box plot of the grades categorized by 

student status?

•	 Can you create that box plot with a y-axis that runs 

from 50 to 110?

�Graph a Dataset: Histogram
Because of the nature of histograms, we really need more data than is 

found in the example dataset we have been working with. Enter the code 

from Listing 5-18 to import the larger dataset.

Figure 5-6.  Box Plot Grouped by Gender
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Listing 5-18.  Importing Dataset from CSV File

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

Location = "datasets/gradedata.csv"

df = pd.read_csv(Location)

df.head()

To create a simple histogram, we can simply add the code in Listing 5-19.

Listing 5-19.  Creating a Histogram not Creating a Box Plot

df.hist()

And because pandas is not sure which column you wish to count the 

values of, it gives you histograms for all the columns with numeric values.

Figure 5-7.  Simple Histogram
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In order to see a histogram for just hours, we can specify it as in  

Listing 5-20.

Listing 5-20.  Creating Histogram for Single Column

df.hist(column="hours")

And to see histograms of hours separated by gender, we can use  

Listing 5-21.

Listing 5-21.  Categorized Histogram

df.hist(column="hours", by="gender")

Figure 5-8.  Single Column Histogram
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�Your Turn
Can you create an age histogram categorized by gender?

�Graph a Dataset: Pie Chart
To create a pie chart, input the code from Listing 5-22.

Listing 5-22.  Pie Charting Your Dataset

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

names = ['Bob','Jessica','Mary','John','Mel']

absences = [3,0,1,0,8]

detentions = [2,1,0,0,1]

warnings = [2,1,5,1,2]

Figure 5-9.  Categorized Histogram
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GradeList = zip(names,absences,detentions,warnings)

columns=['Names', 'Absences', 'Detentions','Warnings']

df = pd.DataFrame(data = GradeList, columns=columns)

df

This code creates a dataset of student rule violations. Next, in a new 

cell, we will create a column to show the total violations or demerits per 

student (Listing 5-23).

Listing 5-23.  Creating New Column

df['TotalDemerits'] = df['Absences'] +

        df['Detentions'] + df['Warnings']

df

Finally, to actually create a pie chart of the number of demerits, we can 

just run the code from Listing 5-24.

Listing 5-24.  Creating Pie Chart of Demerits

plt.pie(df['TotalDemerits'])

Once you run it, you will get a simple pie chart (Figure 5-10).
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But since it is a bit plain (and a bit elongated), let's try the code from 

Listing 5-25 in a new cell.

Listing 5-25.  Creating a Customized Pie Chart

plt.pie(df['TotalDemerits'],

       labels=df['Names'],

       explode=(0,0,0,0,0.15),

       startangle=90,

       autopct='%1.1f%%',)

plt.axis('equal')

plt.show()

Line 2: This adds the students' names as labels to 

the pie pieces.

Line 3: This is what explodes out the pie piece for 

the fifth student. You can increase or decrease the 

amount to your liking.

Figure 5-10.  Simple Pie Chart
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Line 4: This is what rotates the pie chart to different 

points.

Line 5: This is what formats the numeric labels on 

the pie pieces.

Line 7: This is what forces the pie to be circular.

And you will see a pie chart that looks like Figure 5-11.

Figure 5-11.  Customized Pie Chart
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�Your Turn
What if, instead of highlighting the worst student, we put a spotlight on 

the best one? Let's rotate the chart and change the settings so we are 

highlighting John instead of Mel.

�Graph a Dataset: Scatter Plot
The code in Listing 5-26 will allow us to generate a simple scatter plot.

Listing 5-26.  Creating a Scatter Plot

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

dataframe = pd.DataFrame({'Col':

        np.random.normal(size=200)})

plt.scatter(dataframe.index, dataframe['Col'])

Line 4: specifies that figures should be shown inline

Line 6: generates a random dataset of 200 values

Line 7: creates a scatter plot using the index of the 

dataframe as the x and the values of column Col as 

the y

You should get a graph that looks something like Figure 5-12.
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Looking at our plot, there doesn't seem to be any pattern to the data. 

It's random!

�Your Turn
Create a scatter plot of the hours and grade data in datasets/gradedata.csv. 

Do you see a pattern in the data?

Figure 5-12.  Simple Scatterplot
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CHAPTER 6

Practice Problems
In this chapter, you will find problems you can use to practice what you 

have learned. Feel free to use any of the techniques that you have learned, 

but don’t use them all. It would be overkill. Have fun, and good luck!

�Analysis Exercise 1
For this exercise, you can find the data in datasets/algebradata.csv.

Frank Mulligrew is the algebra coordinator for Washington, DC public 

schools. He is required by the school board to gather some statistics. Using 

the information about his class, calculate the following:

	 1.	 Percentage of students with a passing grade

	 2.	 Percentage of women with a passing grade

	 3.	 Average hours of study for all students

	 4.	 Average hours of study for students with a passing 

grade
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�Analysis Exercise 2
You can find the data in the datasets/axisdata file.

Carlos Hugens is the sales manager for Axis Auto Sales, a low-cost 

regional chain of used car lots. Carlos is getting ready for his annual 

sales meeting and is looking for the best way to improve his sales group’s 

performance. His data includes the gender, years of experience, sales 

training, and hours worked per week for each team member. It also includes 

the average cars sold per month by each salesperson. Find out the following:

	 1.	 Average cars sold per month

	 2.	 Max cars sold per month

	 3.	 Min cars sold per month

	 4.	 Average cars sold per month by gender

	 5.	 Average hours worked by people selling more than 

three cars per month

	 6.	 Average years of experience

	 7.	 Average years of experience for people selling more 

than three cars per month

	 8.	 Average cars sold per month sorted by whether they 

have had sales training

What do you think is the best indicator of whether someone is a good 

salesperson?

�Analysis Exercise 3
The data can be found in datasets/dvddata.xlsx.

Baumgartner DVD’s sells high-quality DVD duplicators nationwide. 

You have just been promoted to sales manager and tasked with analyzing 

sales trends and making decisions about the best way to handle your sales 

in the future.
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Right now, each of your salespeople covers one or more districts within 

the same region. Your salespeople contact their customers through either 

emails, phone calls, or office visits. Emails take about one minute each. 

Phone calls take about twenty minutes each, and office visits take about 

two hours. Your staff people work a standard forty-hour week.

	 1.	 Figure out the impact of communication methods 

on number of duplicators sold in a month.

	 2.	 Build a model that will predict the number of sales 

given the number of clients and frequency of each 

mode of communication.

�Analysis Exercise 4
The data can be found in datasets/tamiami.xlsx.

Tami, from Miami, wants to open a tamale cart in New York City. She 

already knows her expenses, but she doesn’t know what to charge. She was 

able to secure the average daily sales data for hot-dog carts by district in the 

NYC area. Analyze this data to figure out a relationship between price and 

quantity sold. You can use this relationship as a benchmark for what people 

are willing to spend for a quick lunch. You need to provide the following:

	 1.	 The list of other relevant factors (other than price) 

that affect sales (if any)

	 2.	 The equation for sales quantity

�Analysis Project
The data can be found in datasets/southstyle.xlsx.

South Carolina–based SouthStyle Foods, a leading manufacturer of 

sausage, has been selling its products under the brand name SouthStyle 

for the last 40 years. SouthStyle Foods is engaged in the manufacturing and 
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marketing of high-quality southern-style processed foods such as sausage, 

bacon, hoppin’ john, collard greens, etc. The company provides a perfect 

blend of traditional southern-style taste tailored to the requirements 

and preferences of the modern consumer. It combines better taste with 

natural purity, innovative packaging, and care for health and comes at a 

reasonable price.

With quality food products and focus on customer satisfaction, 

SouthStyle Foods maintains a leading position in the processed food section 

by widening its customer base and making its products available at affordable 

prices both in South Carolina and nationwide. As a part of its initiatives, the 

company planned to expand its business to increase the sales of its products 

in other regions. However, for this, the company wants to know the factors 

that can increase sales across different states. However, with some new 

companies coming up, very recently the company witnessed an increase in 

competition across the industry, resulting in a decrease in its sales.

To discuss the issues, the president, Ashley Sears, called a meeting 

of the company’s senior officers. During a rather lively discussion, they 

discussed many factors for the fall in sales. However, no common factor 

emerged. The marketing VP suggested hiring a consultant experienced in 

business research, and everyone agreed.

SouthStyle Foods hired your marketing research agency, Care 

Research, for the job. After listening to the problem, your boss thought of 

using a cross-sectional analysis of the problem, as there are 30 territories 

from which it must collect data. Your firm started identifying the variables 

that, according to the company, might have an impact on sales. Based on 

the collected information (Exhibit I) and the previous studies done, you 

came up with five important variables that are expected to be crucial in 

determining the sales. These variables are market potential in the territory, 

number of shops selling processed foods, number of brokers, number of 

popular brands in that territory, and population of that territory.  

The marketing VP wants to know the most important factor or factors to 

focus on. He also wants to know the likely future demand.

Chapter 6  Practice Problems



93

�Required Deliverables

	 1.	 Identify the most important factors for SouthStyle 

Foods to focus on.

	 2.	 Create a formula or model that will allow SouthStyle 

Foods to forecast their sales as they move into new 

territories.
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